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Abstract—This paper proposes a secure surveillance5
framework for Internet of things (IoT) systems by intelligent6
integration of video summarization and image encryption.7
First, an efficient video summarization method is used to8
extract the informative frames using the processing capa-9
bilities of visual sensors. When an event is detected from10
keyframes, an alert is sent to the concerned authority au-11
tonomously. As the final decision about an event mainly12
depends on the extracted keyframes, their modification dur-13
ing transmission by attackers can result in severe losses.14
To tackle this issue, we propose a fast probabilistic and15
lightweight algorithm for the encryption of keyframes prior16
to transmission, considering the memory and processing17
requirements of constrained devices that increase its suit-18
ability for IoT systems. Our experimental results verify the19
effectiveness of the proposed method in terms of robust-20
ness, execution time, and security compared to other im-21
age encryption algorithms. Furthermore, our framework22
can reduce the bandwidth, storage, transmission cost, and23
the time required for analysts to browse large volumes24
of surveillance data and make decisions about abnormal25
events, such as suspicious activity detection and fire de-26
tection in surveillance applications.27

Index Terms—Industrial Internet of things (IoT), infor-28
mation security, lightweight image encryption, surveillance29
networks, video summarization.30

I. INTRODUCTION31

THE recent development in the processing capabilities of32

smart devices has resulted in intelligent Internet of things33

(IoT) environments, enabling the connecting nodes to collect,34

perceive, and analyze necessary data from their surroundings35
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and react accordingly. Wireless multimedia surveillance net- 36

works (WMSNs) are part of this IoT-assisted environment, 37

which consists of visual sensors that observe the surrounding 38

environment from multiple overlapping views by continuously 39

capturing images, thereby producing a large amount of visual 40

data with significant redundancy [1]–[3]. It is widely agreed in 41

the research community of surveillance networks that the col- 42

lected visual data should be processed and only the informative 43

data should be recorded for future usage, such as abnormal event 44

detection, case management, data analysis, and video abstrac- 45

tion. The reason is that sending all the imaging data through 46

the communication lines without processing is impractical be- 47

cause of energy and bandwidth constraints. In addition, it is 48

comparatively difficult and time-consuming for an analyst to 49

efficiently extract actionable intelligence from the sheer volume 50

of surveillance data [4]. 51

Therefore, it is necessary to exploit a mechanism that can 52

collect semantically important visual data autonomously by uti- 53

lizing the processing and transmission capabilities of modern 54

smart visual sensors. Such a mechanism can make it possible to 55

intelligently select the appropriate view from multiview surveil- 56

lance data captured by multiple sensors connected via IoT in- 57

frastructure. It can facilitate the processing of the collected data 58

in real time so as to send only relevant data to the central storage 59

for future use. Furthermore, it enables surveillance specialists 60

to make timely decisions by analyzing only the representative 61

frames, grasping the pertinent contents of the original lengthy 62

sequence of visual data. Some typical surveillance scenarios 63

highlighting events of interest to us in industrial environments 64

are shown in Fig. 1. 65

The literature review indicates that WMSN-based monitor- 66

ing systems have two main requirements: first, robustness; and 67

second, efficient resource utilization [5]. The robustness of the 68

real-time surveillance system is often compromised due to fail- 69

ure of visual sensors caused by human intrusion, technical mal- 70

function, or natural catastrophes. This can be avoided by using 71

a multiview camera WMSN. However, the multiview camera 72

WMSN encounters the problem of full or partial coverage over- 73

laps, producing a large volume of redundant data [6]. This results 74

in unnecessary resource utilization of the network in the pro- 75

cessing and transmission of such huge data. Further, the visual 76

data in the WMSN are transmitted wirelessly to a visual pro- 77

cessing hub (VPH) and base station (BS). This communication 78

is vulnerable to several security issues. It is, therefore, important 79

to send the imaging data securely to the BS with some security 80
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See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Smart and secure surveillance framework using IoT infrastructure in industrial environment.

mechanism because any modification to the transmitted data can81

greatly affect the analyst’s decision at the BS. Furthermore, uti-82

lization of a dedicated spectrum for transmission of multimedia83

data in WMSNs is comparatively difficult due to the congested84

bandwidth allocation mechanism.85

Therefore, in this paper, we address these problems by using86

an intelligent and power-efficient system that can make each87

sensor node intelligent and autonomous enough to collect only88

the important data in real time and take the appropriate action ac-89

cordingly, thus, reducing the bandwidth consumption and trans-90

mission cost. Furthermore, we develop a security prototype for91

secure transmission of semantically relevant visual data to a fu-92

sion center with improved spectrum utilization and preservation93

of the limited resources of WMSNs. Technically, our system94

uses image encryption to encrypt the visual contents prior to95

transmission, thus, increasing the security during communica-96

tion within industrial WMSNs. For encryption of digital images,97

the commonly used approaches include nonlinear chaotic sys-98

tems, as verified from the recent literature. For instance, in our99

previous work [7], we used a Zaslavsky chaotic map without100

employing finite computations of the pseudo random number101

generator (PRNG) for symmetric image encryption using per-102

mutation and diffusion. Later on, in another work [8], we applied103

our algorithm to the extracted keyframes of a wireless capsule104

endoscopy (WCE) procedure using video summarization [9],105

[10] and proved its ability to withstand all known attacks. This106

ensured the dissemination of important keyframes to healthcare107

centers and gastroenterologists for personalized WCE.108

In this paper, we propose an energy-friendly image encryp- 109

tion algorithm using one chaotic map employed in PRNG and 110

a cryptosystem structure. Probabilistic cipher is achieved using 111

embedded random bits with plain images, providing random- 112

ized ciphered images that are indistinguishable from random 113

noise. Various tests and results show the excellent performance 114

of the proposed cryptosystem, which exceeds several state-of- 115

the-art algorithms. The simulation and security analysis indicate 116

that the proposed encryption algorithm can produce different 117

ciphered images with a high level of security and limited pro- 118

cessing time, making it more suitable for industrial IoT systems. 119

The rest of this paper is organized as follows: Section II 120

demonstrates the proposed system in detail. Section III presents 121

the experimental results, followed by concluding remarks and 122

future directions in Section IV. 123

II. PROPOSED SECURE SURVEILLANCE FRAMEWORK 124

The rise in demand for constant surveillance, improvement in 125

visual sensor technologies, and the progress in IoT technologies 126

has necessitated the efficient management and timely analysis of 127

the multimedia big data generated by the ever growing number 128

of surveillance networks in industrial systems. These technolo- 129

gies make it possible to automatically analyze the video data so 130

as to generate a real-time autonomous response. Visual sensor 131

networks have become smarter, with improved storage and pro- 132

cessing capabilities enabling them to perform complex data pro- 133

cessing in real time. In the case of multiview surveillance videos 134
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Fig. 2. Illustrating salient motion detection. The first row shows two persons crossing the fence and the second row shows the salient motion of
objects detected by our approach.

captured in industrial environments, their processing abilities135

can be used to analyze the video stream to identify keyframes136

and then discard irrelevant and redundant visual data, thus min-137

imizing the bandwidth requirements. The improved communi-138

cation abilities of sensor nodes can be used to collaboratively139

perform sophisticated scene analysis in order to generate multi-140

view summaries of surveillance videos in real time. The smart141

sensors can be used to generate an autonomous response after142

detecting abnormal events, such as fire in industrial zones, by143

utilizing the IoT infrastructure. Furthermore, the security of the144

keyframes can be ensured by applying lightweight encryption145

algorithms, considering the processing capabilities, memory,146

and transmission constraints. An overview of the proposed sys-147

tem is given in Fig. 1. The details of this framework and its main148

embodiments are illustrated in the subsequent sections.149

A. Keyframes Extraction Using Video Summarization150

From the Stream of Visual Sensors151

The VPH in industrial surveillance networks collects visual152

data from visual sensors in the form of video frames, resulting153

in large volumes of video data. Due to the energy and bandwidth154

constraints of WMSNs, the transmission of all of the streaming155

data is impractical because of the larger distance between the156

BS and VPH. To tackle this issue, researchers have employed157

different compression [11] and video summarization methods158

[12] to reduce the volume of visual data at the VPH so that159

only informative video frames are forwarded to the BS for pro-160

cessing. Considering the bandwidth and energy constraints, we161

employ an energy-friendly keyframe extraction approach from162

our recent work [4] to reduce the redundancy. Our keyframes ex-163

traction algorithm is lightweight because it uses novel integral-164

image features for salient motion detection. This computation-165

ally efficient algorithm can be employed for small devices, such166

as visual sensors that have energy, processing, and bandwidth 167

constraints. This is evident from [13], where the authors ex- 168

perimentally proved that the results of integral images are 15 169

times faster than existing methods of object detection. To ex- 170

tract keyframes using this approach, first, the integral image is 171

computed for each frame captured by the visual camera, then, 172

background bootstrapping is conducted, which is essential for 173

the removal of background motion and accurate estimation of 174

salient motion. Salient motion can be measured by computing 175

the changes in image block values in neighboring frames. It is 176

robust to even small background motion, as it uses background 177

model and integral image based temporal gradients for salient 178

motion. This can be verified from Fig. 2, where the salient mo- 179

tion detection by our scheme is illustrated using a few frames 180

from a sample video of an illegal border crossing. 181

In the given sample video, there is significant motion clutter 182

due to the strong wind and river waves that continuously change 183

the background pattern, thus, making the salient motion detec- 184

tion more challenging. Despite these challenges, this approach 185

detects the salient motion correctly, as shown in Fig. 2. Based 186

on the salient motion detection, the informative frames are se- 187

lected and then passed to the encryption module for lightweight 188

encryption. 189

B. Probabilistic Keyframes Encryption Algorithm 190

This section illustrates the encryption process for the 191

keyframes extracted from the stream of visual sensors in an IoT 192

industrial environment. The proposed algorithm has two major 193

components: The first component aims to use a recent two- 194

dimensional (2-D) chaotic map [14] to produce PRNG suitable 195

for our proposed image encryption, and the second compo- 196

nent executes one round of permutation–diffusion processes for 197

the keyframe under consideration. Most surveillance systems 198
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Fig. 3. Plot distributions of (x, y) chaotic sequence.

capture videos in RGB format through visual sensors with a199

high resolution. Thus, we propose a fast RGB image encryption200

algorithm that guarantees the privacy as well as the confiden-201

tiality of the keyframes. Furthermore, we use a randomized202

approach, making it infeasible for attackers to learn anything203

about the original data from the ciphered frames. This restricts204

the availability to attackers of the information required to build205

a cryptanalysis model.206

1) 2-D Logistic-Sine System: A 2-D logistic-adjusted-sine207

map (LASM) is presented with efficiencies and high sensitivity208

to initial values and a complex chaotic behavior of its gener-209

ated sequences. The mathematical equation of the LASM is as210

follows:211 {
xi+1 = sin (πu (yi + 3) xi (1− xi))
yi+1 = sin (πu (xi + 3) yi (1− yi))

. (1)

Herein, all values (x, y, u) are within [0, 1]. The properties212

of this map have important features, such as ergodicity, unpre-213

dictability, and sensitivity to initial values [14]. Fig. 3(a) and (b)214

shows the plot of sequence values generated directly from the215

LASM. As shown in Fig. 3, this map has good uniform distribu-216

tion for its sequences with complex chaotic behaviors and better217

unpredictability [14]. We chose this map to design our PRNG218

and employed it in our image encryption scheme.219

We design a new PRNG based on the LASM, whose secret220

keys are used to generate the chaotic numbers sequence related221

to the size of the plain image. In addition, we use the aggregate of222

plain image pixels to guarantee a high level of security against all223

chosen attacks. The procedure of generating chaotic sequences224

using the LASM is shown in Algorithm 1.225

Herein, we compute the sum of the pixels of the keyframe or226

the input sequence so that the generated sequences are related to227

the original keyframe. To get rid of the effect of the initial values,228

we remove the first three numbers generated from the sequence.229

For ease of understanding, we denote the pseudorandom number230

generator in Algorithm 1 by PRNG, where the inputs are a set231

of numbers of secret keys and a sequence of numbers.232

2) Keyframe Encryption: The major steps of encrypting a233

keyframe are described in this section. First, we set the initial234

values x0, y0, u0, x1, y1, u1 as secret keys to make exhaustive at-235

tacks ineffective and useless. Coding the pixels of the keyframe236

starts with embedding true chaotic bits into only one channel of237

the original keyframe. Then, confusion and diffusion operations238

are designed to randomly change the pixel values and shuffle the239

pixel positions, respectively. Since real-time applications need a240

Algorithm 1: Generation of Chaotic Sequences Using
LASM (PRNG).

Input: (x0, y0, u, P )
1: [a, b, c]← size(P )
2: Sum =

∑
i

∑
j

P .

3: IF Sum = 0
S ← 0;

Else
S0 = 2 + abs (log 10 (sum−1))
S = e(S0) × Sum−1g

End
4: x = x0 + S; y = y0 + S; u = u + S
5: Sequence← zeros(a× b× c, 1)
6: For i = 1 to ceil((a× b× c)/2)

xi+1 = sin(π u(yi + 3)xi(1− xi)
yi+1 = sin(π u(xi + 3)yi(1− yi)
Sequence(2i) = floor(1010 × xi+1) mod 256
Sequence(2i + 1) = floor(1010 × yi+1) mod 256

End
Output: Sequence

fast algorithm, we thus minimize the steps and computations in 241

our encryption scheme to comply with the real-time processing 242

demands of IoT devices in industrial zones. It should be noted 243

that our proposed method can encrypt images of all dimensions 244

with size [a, b, 3], where “a” and “b” are integer numbers. 245

Fig. 4 shows the visual encryption and decryption for a se- 246

lected keyframe from the surveillance streams. The steps of the 247

encryption are highlighted as follows. 248

Step 1: Let the keyframe be denoted by I of size [a × b × 249

3]. First, the chaotic sequences of numbers are constructed as 250

described in Algorithm 1. The generated sequence is denoted 251

by P1 as follows: 252

P1 = prsg (x0, y0, u0, 0) (2)

Herein, we set zeros with same size as the plain keyframe 253

I instead of the plain image, so that S = 0, as given in 254

Algorithm 1. 255

Step 2: Next, we apply the initial processing as follows: 256

[IR IGIB ]← I

CR = LSBNoise (IR )⊕ IG ⊕ IB

CG = CR ⊕ IB

CB = CR ⊕ IG

C1 ← [CR CG CB ], reshape the three matrices (CR CG CB ) 257

into the 1-D vector C1 258

Cinitial = C1 ⊕ P1.

Here, LSBNoise uses a random noise bit at the position of 259

the least significant bit (LSB). It consists of the integration of 260

the probabilistic sound encryption LSB [15]. In this step, we 261

use a random source to ensure that each produced bit has the 262

possibility of 50%. Next, we generate a random bits matrix with 263
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Fig. 4. Illustrating encryption/decryption using a sample frame from surveillance of interest.

size [a, b], followed by embedding the random bits in the plain264

image using an XOR operation.265

It should be noted that the proposed image encryption can266

encrypt both grayscale and color images without any issue. For267

a grayscale image, we treat its matrix as a red channel only and268

embed the noise bits in the entire grayscale matrix, followed by269

the rest of the encryption steps. For color images, we reshape the270

image matrices into a 1-D vector, i.e., [1, 3∗w∗h]. The inverse271

operation is possible, which restores the same number of ma-272

trices at the final stage of encryption. Thus, a grayscale image273

with one matrix or an RGB image with three matrices will not274

disturb our cryptosystem.275

Step 3: We generate two sequences P2 and P3, respectively,276

as follows:277 {
P2 = P1 ⊕ prsg (x1, y1, u1, Cinitial)
P3 = prsg (x0, y0, u0, Cinitial)

. (3)

Note: The total number of pixels in the original keyframe is278

defined as a × b × c. Therefore, all the generated sequences279

from Algorithm 1 must be of the same size.280

Step 4: Next, we sort the sequences P2 and P3 in ascending281

order to obtain the indices sequences π and π′ as shown in (4)282

and (5). Thus, the generated sequences represent permutation283

matrices284

Sort (P1) = P ′1 =

⎡
⎣1

π1

,
2

π2

,
3

π3

. . . .,
a× b× c

πa×b×c

⎤
⎦ (4)

Sort (P2) = P ′2 =

⎡
⎣1

π′1
,

2

π′2
,

3

π′3
. . . .,

a× b× c

π′a×b×c

⎤
⎦ . (5)

Step 5: Next, we shuffle C using the sort index of the new285

sequences. Here, we employ the P-box of P ′2 followed by the286

P-box of P ′3.287

Step 6: Next, we shuffle C using the P-box of P ′3, followed288

by the P-box of P ′2.289

Step 7: Finally, we reshape the obtained matrix of the previous290

steps into three matrices corresponding to the RGB matrices.291

The obtained matrix is denoted by “C,” which is the ciphered292

frame for plain image I.293

3) Keyframe Decryption: The decoding process is the in-294

verse of the encryption mechanism, aiming to get the original295

keyframe. The following steps are used to restore the original296

keyframe from the encrypted frame using the exact values of297

the secret keys.298

Fig. 5. (a) Histogram of the individual plane of an RGB keyframe given
in Fig. 4(a); (b) histogram of the three planes for the encrypted keyframe
given in Fig. 4(b).

Step 1: Read the ciphered keyframe Cinitial and get its size 299

[a, b]. 300

Step 2: Reshape the image matrices into one matrix with size 301

[a, 3, b]. 302

Step 3: Generate the chaotic sequences P1, P2, and P3 using 303

Algorithm 1 as follows: 304⎧⎪⎨
⎪⎩

P1 = prsg (x0, y0, u0, 0)
P2 = P1 ⊕ prsg (x1, y1, u1, Cinitial)
P3 = prsg (x0, y0, u0, Cinitial)

. (6)

Step 4: Use the bijection property of the permutation matrix 305

of P ′2 and P ′3 to restore the original position of the pixels. For 306

this, first we use the inverse P-box of P ′3 followed by the inverse 307

P-box of P ′2. 308

Step 5: Repeat step 4 by changing the order of the P-box, i.e., 309

use the inverse P-box of P ′2 first, followed by using the inverse 310

P-box of P ′3. The obtained matrix is denoted by D4. 311

Step 6: Apply the final processing steps as follows: 312

DFinal = D4 ⊕ P1, Reshape the obtained matrix into three 313

matrices D′R D′G D′B corresponding to the RGB matrix. 314

DR ← D′R ⊕D′G ⊕D′B , DG ← D′G ⊕D′R , and

DB ← D′B ⊕D′R .

Step 7: The obtained matrix, denoted by “D,” consists of DR , 315

DG , and DB matrices, indicating the decrypted keyframe. 316

III. EXPERIMENTAL RESULTS AND DISCUSSION 317

This section illustrates the performance evaluation of the pro- 318

posed system from different perspectives. We used MATLAB 319

R2015a in the Windows 10 environment with an i7 proces- 320

sor of 2.4 GHz and 12 GB of RAM for the experimentation, 321
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Fig. 6. (a.i) Keyframes, (b.i) encrypted keyframes, and (c.i) decrypted keyframes, respectively (from left to right, and (i ∈ {1, 2, 3, 4, 5}).

TABLE I
INFORMATION ENTROPY TESTS

Name Size Keyframe Ciphered

R G B R G B

Zeros pixel [1024 1024 ][3] 0 0 0 7.9998 7.9998 7.9998
Keyframe 1 [240 352] [3] 6.6640 6.6580 6.7605 7.9976 7.9976 7.9976
Keyframe 2 [240 352] [3] 6.2363 6.0248 5.9998 7.9981 7.9978 7.9979
Keyframe 3 [240 352] [3] 7.7660 7.6599 7.7855 7.9975 7.9977 7.9979
Keyframe 4 [240 352] [3] 6.8212 6.7584 6.7003 7.9979 7.9975 7.9979
Keyframe 5 [240 352] [3] 6.8679 6.8531 6.7077 7.9979 7.9976 7.9978
Keyframe 6 [240 352] [3] 6.4410 6.3789 6.4770 7.9978 7.9978 7.9979

simulation, and analysis. We set 0.67 0.9 0.4 0.67 0.9 0.4 as a322

default secret key for the proposed image encryption during the323

experimental tests.324

A. Visual and Histogram Tests325

The histogram of an image describes its pixels distribution326

by plotting the number of pixels at each color intensity level327

[16]. Fig. 5 shows the histogram of a plain image and encrypted328

image before and after the encryption in three components R, G,329

and B, respectively. The histograms in the three components of330

the encrypted image are very uniform and completely different331

from the histograms of the plain image.332

Fig. 6 shows different keyframes and their encrypted and333

decrypted versions extracted from visual data of surveillance334

in industrial networks. Thus, our proposed image encryption335

algorithm can withstand the statistical attacks.336

B. Information Entropy337

It is agreed in the image encryption community that the ci-338

phered images should appear as truly random sources. To verify339

this, information entropy is the most important metric that de-340

cides whether the sources are random or not. We calculate the341

entropy of an image (the entropy of a source) with P (ci) repre-342

senting the probability of a pixel, using the following equation: 343

S (C) = −
255∑
i=1

P (ci) log2P (ci). (7)

According to this test, the information entropy of the ciphered 344

keyframe should be close to 8. Table I shows the numerical val- 345

ues of the entropy for a set of keyframes and their corresponding 346

ciphered keyframes for three individual channels. All the values 347

obtained from Table I are close to 8. Therefore, our proposed 348

image encryption produces a secure ciphered image with a ran- 349

domlike source. 350

C. NPCR and UACI 351

In this section, we employ the number of changing pixel rate 352

(NCPR) and the unified averaged changed intensity (UACI) tests 353

[17] to prove that our proposed cryptosystem can avoid differen- 354

tial attacks against ciphered data. Basically, the attacker aims to 355

cipher two images, differing in a pixel, and look at the difference 356

between the corresponding ciphered images. Here, the differ- 357

ence between the ciphered data should not show any black-zone 358

blocks. In this regard, we produce two ciphered images gen- 359

erated from our proposed image encryption. We investigated 360

the ability to resist the differential attacks with the propriety of 361

probabilistic encryption. Here, we tested the NPCR and UACI 362
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TABLE II
NPCR AND UACI TESTS RESULTS FOR EACH CHANNEL OF RGB

Keyframe1 Keyframe2 Keyframe3 Keyframe4 Keyframe5

NPCR UACI NPCR UACI NPCR UACI NPCR UACI NPCR UACI
R 99.5881 33.3848 99.5713 33.3379 99.6070 33.4251 99.6009 33.4910 99.6165 33.3546
G 99.6283 33.4955 99.6123 33.5213 99.5608 33.4013 99.5899 33.3394 99.6094 33.3943
B 99.5999 33.4559 99.6059 33.4705 99.6307 33.5713 99.6311 33.4804 99.6046 33.4404

Fig. 7. Evaluation of the probabilistic image encryption using NPCR
and UACI tests for 1000 repeats.

TABLE III
COMPARISON RESULTS FOR EACH CHANNEL OF RGB

Our Belazi
et al. [19]

Wei et al.
[20]

Zhou
et al. [21]

Zhou
et al. [22]

NPCR 99.6125 99.6177 99.2172 99.60 99.6098
UACI 33.4451 33.6694 33.4058 33.40 33.4384

scores of two ciphered images C1 and C2 that are generated363

from the same image I using the same secret keys. Equations364

(8) and (9) present the formulas of these tests as follows:365

NPCR (C1, C2) =
∑
i,j

S (i, j)
D

× 100 % (8)

UACI (C1, C2) =
∑
i,j

C1 (i, j)− C2 (i, j)
255×D

× 100 %. (9)

Herein, “D” denotes the number of pixels and “S” is repre-366

sented by367

S (i, j) =

{
0, if C1 (i, j) = C2 (i, j)
1, Elsewise.

(10)

Our proposed image encryption is a randomized algorithm,368

which produces completely different encrypted images for the369

same plain image using the same secret key. We submitted both370

ciphered images C1 and C2 to the NPCR and UACI tests and371

collected the results for a set of images as listed in Table II. The372

results demonstrate that our cryptosystem is semantically secure373

and can ensure that the attacker cannot find any information374

between the ciphered images and the original ones. The results375

prove that each encryption is completely different from the next376

(randomly ciphered). Fig. 7 shows the results of the NPCR and377

UACI test repeated 1000 times for zero pixels with size [256,378

256], [3], where we took the average result for the three plans379

(RGB).380

Fig. 8. Distribution of two adjacent pixels in the plain and encrypted
image in the blue channel over horizontal, vertical, and diagonal
directions.

Fig. 9. Distribution of two adjacent pixels in the plain and encrypted
image in the green channel over horizontal, vertical, and diagonal
directions.

Our proposed scheme successfully passed these tests and 381

exceeded all theoretical values [7]. In addition, we compared 382

the performance of our algorithm with other recent encryption 383

algorithms in Table III, and can demonstrate the effectiveness 384

of our proposed scheme compared with other methods. All the 385

results demonstrated that our proposed image encryption has a 386

strong ability to resist differential attacks. 387
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TABLE IV
CC OF ADJACENT PIXELS TESTS

Component Keyframe Ciphered

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

R 0.9716 0.8707 0.8569 0.0035 0.0055 8.034e−04
Keyframe1 G 0.9660 0.8459 0.8288 − 0.0026 − 0.0044 0.0016

B 0.9663 0.8464 0.8292 0.0025 − 3.594e−04 0.0034

R 0.9860 0.9442 0.9304 − 0.0014 − 0.0042 0.0092
Keyframe2 G 0.9862 0.9434 0.9296 − 0.0034 − 0.0033 − 0.0024

B 0.9872 0.9491 0.9364 0.0077 − 0.0029 0.0017

R 0.9376 0.8672 0.8470 0.0030 0.0075 − 0.0053
Keyframe3 G 0.9382 0.8691 0.8494 0.0063 − 0.0024 − 0.0051

B 0.9469 0.8881 0.8711 0.0017 − 0.0023 − 0.0030

R 0.9948 0.9908 0.9884 − 0.0010 − 0.0022 0.0012
Keyframe4 G 0.9919 0.9852 0.9819 − 0.0015 0.0016 − 0.0017

B 0.9911 0.9836 0.9800 0.0025 − 0.0004 0.0003

Fig. 10. Distribution of two adjacent pixels in the plain and en-
crypted image in the red channel over horizontal, vertical, and diagonal
directions.

D. Correlations Analysis388

A plain image has high information redundancy and high389

correlations with its neighboring pixels. Generally speaking, an390

original image has a correlation coefficient (CC) almost equal391

to 1. Therefore, image encryption should be able to eliminate392

these correlations, indicating that the ideal value of an encrypted393

image is CC = 0 [18]. The correlation of two adjacent pixels394

is presented mathematically as follows:395

CCxy =
cov (x, y)√

D (x)×D (y)
(11)

cov(x, y) =
1
n

n∑
i=1

(xi − E(x)) (yi − E(y)) (12)

D (x) =
1
n

n∑
i=1

(xi − E(x))2 (13)

TABLE V
COMPARISON OF CC OF ADJACENT PIXELS TESTS

Algorithm Our [24] [19] [25] [23]
CC score 0.0034 0.0060 0.0129 0.0031 0.0722

TABLE VI
KEY SPACE COMPARISON

Algorithm Our [24] [23] [25]
Space key 1090 0.25× 1064 1056 2180

Fig. 11. (a) Plain keyframe, (b) encrypted keyframe using the secret
key 0.67 0.9 0.4 0.67 0.9 0.4; (c) decrypted keyframe using the secret key
0.67 0.9 0.4 0.67 0.9 0.4; (d) decrypted keyframe using the secret key
0.67 + 10−15 0.9 0.4 0.67 0.9 0.4; (e) decrypted keyframe using the secret
key 0.67 0.9 + 10−15 0.4 0.67 0.9 0.4; (f) difference image between (d)
and (e).

TABLE VII
ENCRYPTION/DECRYPTION SPEED TEST RESULTS

Size of
keyframe

[256, 256, 3] [512, 512, 3] [1024, 1024, 3] [2048, 2048, 3]

Speed (s) 0.1616 0.6708 2.821 11.5471

396

E (x) =
1
n

n∑
i=1

xi. (14)
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TABLE VIII
COMPARISON RESULTS BETWEEN OUR ALGORITHM AND PREVIOUS RECENT SCHEMES

Image size Key space Speed (ms) Entropy CCa NPCR UACI

Our [1024, 1024], [3] 1090 2821 7.9998 0.0035 99.6125 33.4451
[19] [1024,1024], [1] 2624 2513 7.9998 0.0129 99.6177 33.6694
[24] [256,256], [1] 0.25× 1064 1320 7.9974 0.0060 99.6200 33.5100
[23] [256,256], [1] 1056 547 7.9959 0.0722 >99 ∼=33.43

We employed the statistical test of correlation of two adjacent397

pixels in encrypted keyframes. We randomly select 2000 pixels398

in keyframes and their corresponding adjacent pixels in each399

channel from the RGB space along with the horizontal, vertical,400

and diagonal directions. Figs. 8–10 show the visual results for401

the distributions of two adjacent pixels in a keyframe and the402

corresponding ciphered keyframe in the blue, green, and red403

channels over the horizontal, vertical, and diagonal directions.404

The graphs in the first row are for the plain keyframe, whereas405

the graphs in the second row are for the encrypted keyframe.406

It can be noted that the plots vary greatly in both the original407

keyframe and the encrypted keyframe. The dots are well dis-408

tributed with a good uniform probability distribution in the plot409

of the ciphered keyframe. Dots are located on the diagonal line410

in the plot of the original keyframe.411

Next, we used the selected pixels of keyframes and their412

corresponding encrypted keyframes to compute the numerical413

scores of CC in the three channels along the horizontal, vertical,414

and diagonal directions. Table IV shows the results of this test415

with different sets of keyframes and their ciphered versions with416

numerical values near to one and zero, respectively. Finally, we417

compared the average of the numerical results with the scores418

of other recent methods [19], [23], [24]. The results show that419

our proposed algorithm achieves comparable or better scores,420

as reported in Table V. Thus, our proposed image encryption421

can considerably reduce the inherent correlation of the original422

adjacent pixels.423

E. Analysis of Secret Key424

To resist exhaustive attacks, the space key of an encryption425

algorithm should be at least 2128. In our proposed image en-426

cryption, we set (x0, y0, u0, x1, y1, u1) as secret keys. The427

space key in our work can be computed with more than 1090428

and, with such a large space key, there is no need for brute force429

to break our proposed image encryption. Moreover, the space430

key is larger than other recent schemes, as shown in Table VI.431

Since our proposed image encryption is probabilistic, the432

ciphered image will accordingly change completely for each433

encryption using the same keyframe and secret keys. Therefore,434

our proposed image encryption does not give any useful infor-435

mation to attackers, thus validating its security. Fig. 11 shows436

that decryption is an option only with the exact secret keys, and437

that our proposed cryptosystem is robust against differential at-438

tacks at decryption processes. Therefore, our algorithm is highly439

sensitive to the secret key and provides a high level of security440

for the keyframes.441

F. Speed Tests and Performances Comparison 442

In this part, we show the results of the encryption/ decryption 443

execution time test for a set of keyframes with different sizes. 444

Table VII shows the numerical value obtained after encrypting 445

the keyframes. In our proposed encryption scheme, the encryp- 446

tion and decryption have the same execution time. As shown in 447

Table VII, the running time of the proposed scheme is fast, mak- 448

ing it more suitable for real-time applications, such as secure 449

surveillance. 450

In addition, we compared the performance of our proposed 451

image encryption with other recent encryption schemes [19], 452

[23], [24]. Table VIII shows the comparison between our pro- 453

posed method and these other cryptosystems. It is clear that the 454

results obtained from our algorithm exceeded the ideal values 455

for these tests [7] and are comparable to other algorithms. All 456

these schemes have reported a good score and present a secure 457

level of confidentiality for the images. Our CC average (CCa) 458

score is obtained from the average of all values of the CC. As 459

shown, CCa in our algorithm has the lowest values, which re- 460

flect the strength of the proposed algorithm for eliminating the 461

strong correlation of adjacent pixels of the plain image. Since we 462

compared our performance with a different set of images under 463

various platforms and system characteristics with many factors, 464

we can only approximate the faster algorithm. Our proposed 465

image encryption has a good execution rate of 1310.7 kb/s. The 466

work in [24] has 49.64 kb/s, [19] has 0.4173 kb/s, and [23] has 467

0.1198 kb/s. These statistics indicate that the execution time of 468

our algorithm is better than the other mentioned algorithms. 469

IV. CONCLUSION AND FUTURE WORK 470

Due to recent advances in IoT-assisted networks for surveil- 471

lance in industrial environments, a significant amount of re- 472

dundant video data are generated. Its transmission, analysis, 473

and management are difficult and challenging, requiring image 474

prioritization. In this paper, an efficient video summarization 475

method is first used to extract the informative frames from 476

the surveillance video data, which can be used for abnormal 477

event detection. Since the extracted keyframes are important 478

for further analysis, their privacy and security is of paramount 479

importance during transmission. Therefore, we proposed a fast 480

probabilistic and lightweight algorithm for the encryption of 481

keyframes prior to transmission, considering the memory and 482

processing requirements of constrained devices, which increase 483

its suitability for industrial IoT systems. Our algorithm is se- 484

cure because an attacker cannot collect any useful information 485

about a keyframe from its corresponding ciphered image. The 486
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experimental results verify the efficiency, security, and robust-487

ness of our algorithm compared to other image encryption meth-488

ods. Furthermore, it also confirms its effectiveness for reducing489

the bandwidth, storage, and transmission cost, as well as reduc-490

ing the browsing time of analysts dealing with large volumes of491

surveillance data to make decisions about abnormal events, such492

as suspicious activity detection and fire detection in industrial493

environments.494

This paper mainly focuses on video data of visual sensors495

and does not consider data collected in the IoT environment496

from other types of sensors. Further research can be conducted497

to incorporate data from other diverse devices for numerous ap-498

plications [26]–[29] and further improve the security measures499

in other specific areas [30]–[32]. Another research direction is500

to use dynamic keys instead of traditional encryption keys to501

further improve the security of the overall framework.502
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