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Abstract— Smoke detection in IoT environment is a primary 

component of early disaster-related event detection in smart cities. 

Recently, several smoke and fire detection methods are presented 

with reasonable accuracy and running time for normal IoT 

environment. However, these methods are unable to detect smoke 

in foggy IoT environment, which is a challenging task. In this 

article, we propose an energy-efficient system based on deep 

convolutional neural networks (CNN) for early smoke detection in 

both normal and foggy IoT environments. Our method takes 

advantage of VGG-16 architecture, considering its sensible 

stability between the accuracy and time efficiency for smoke 

detection compared to the other computationally expensive 

networks such as GoogleNet and AlexNet. Experiments performed 

on benchmark smoke detection datasets and their results in terms 

of accuracy, false alarms rate and efficiency reveal the better 

performance of our technique compared to state-of-the-art and 

verifies its applicability in smart cities for early detection of smoke 

in normal and foggy IoT environments.  

Index Terms— CNNs, Smart Cities, Smoke Detection, Fire 

Alert, Disaster Management, Image Classification, Surveillance, 

Foggy IoT Environment 

I. INTRODUCTION 

HE increase of smarter surveillance camera technologies 

and their advance processing proficiencies gain a lot of 

advantage in the field of real-time video analysis i.e., 

objects detection [1, 2], object tracking [3, 4] and action 

recognition [5-7]. With recent revolution of smart devices and 

its processing capabilities, they are used for various purposes in 

Internet of things (IoT) environments in smart cities i.e., [8, 9]. 

In video-based fire detection systems [10-12] attracted major 

attention in the current era compared to conventional sensors. 

Fire can bring massive damages to human lives and economics, 

thus automatic fire detection system is very important for 

disaster management to handle the fire on time. Smoke is a 

primary sign of fire and its early detection provides a 

convenient way to avoid fire accidents, but it is very difficult to 

detect smoke using sensors in outdoor IoT environment [13]. 

As these sensors have a very limited range and outdoor 

environment needs a wide range of detection system to cover 

up all areas, which can be made possible through vision sensors. 

It is a known phenomenon that smoke spreads faster and can be 

identified from far away using vision sensors. However, its 

automatic detection using computer vision techniques is still an 

open challenge for the research community due to various 

reasons such as the similarity with other natural objects like 

clouds and shadows, inconsistency of smoke density and 

motion and complex visual pattern of smoke [14]. The current 

literature shows that several researchers have presented smoke 

detection methods based on shape, color, texture and motion 

features. For instance, [15-17] used color based decision for 

detection of smoke regions. Chunyu et al. [15] proposed a 

smoke detection method based on motion and color features by 

making use of optical flow and back propagation neural 

network for classification of smoke. Calderara et al. [16] took 

advantage of image energy and color information for 

development of smoke detection system. Nguyen et al. [17] 

developed a smoke detection technique which uses fuzzy C-

mean for clustring and back propegation neural network for the 

classificaiton of smoke based on color features. Besides color 

and motion, shape features are also exploited for smoke 

detection. For instance, [18-20]explore different shape features 

including contours, histograms of edge orientation, spectral, 

spatial and temporal characteristics of smoke. Similarly, several 

other smoke detection methods that use motion features, can be 

found in [21-23]. The motion features used by these methods 

are, accumulative motion orientation model, approximate 

median and block processing technique. Finally, [24-26] used 

textue features including local binary pattern, wavelet and gray 

level co-occurance matrix. The main issues with all these color, 

shape, motion and texture features based methods are their low 

accuracy, high false alarm rate and failure to detect smoke from 

larger distance or smoke of small size. 

 To tackle these issues, recently different smoke detection 

methods are introduced. As, Dimitropoulos et al. [27] proposed 

a new higher order linear dynamical smoke detection method 

based on higher order decomposition of multidimensional 

pictorial data. Their method represents the video subsequences 

as histograms of high order dynamical system descriptors made 

by smoke extents in each subsequence and improves the 

classification accuracy by combining spatiotemporal modeling 

with multidimensional dynamic texture analysis of smoke using 

a particle swarm optimization approach. The main limitation of 

this work is low frame rate due to high computation and low 

detection rate. Yuan et al. [28] presented a smoke detection 

technique that uses Haar-like and statistical features with a 

staircase searching technique and dual threshold AdaBoost 

classifier. Their algorithm cannot detect some parts of the 

smoke due to high variation of color and density of smoke and 
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with a very low accuracy in some videos. A more recent fast 

smoke detection method in video surveillance using compute 

unified device architecture (CUDA) is proposed in [29]. Their 

method depends upon shape and color features of the smoke 

regions and for the fast processing, hybrid approach of utilizing 

CPU and GPGPU using CUDA are used. 

The above-mentioned existing state-of-the-art smoke 

detection approaches are applicable to normal environment 

only with low performance in foggy and uncertain environment. 

Furthermore, computationally expensive methods are not 

recommended for real-time processing. Moreover, the smoke 

detection methods still need improvement in terms of false 

alarm rate and accuracy. To address these problems, in this 

article we propose an energy-efficient smoke detection 

framework for early detection of smoke in normal and foggy 

environment. More precisely, the major contributions of our 

method are summarized as follows: 

1. We investigated different state-of-the-art CNN models for 

smoke detection in foggy IoT environment and propose an 

energy-efficient CNN framework for early smoke 

detection in normal and foggy environment. The 

reasonable computational complexity of our CNN 

architecture along with its accuracy and model size, make 

it a suitable system for smoke detection in IoT-assisted 

smart cities compared to state-of-the-art. 

2. From literature it is evident that pervious methods contain 

benchmark datasets but these are specially captured in 

normal environment only. We created our own dataset for 

detection of smoke in foggy environment for 

benchmarking purposes. The dataset will be publicly 

available to researchers for tuning their smoke detection 

methods for foggy environment. 

3. Unlike state-of-the-art methods, that are not appropriate to 

identify smoke in uncertain or foggy environment, our 

proposal can detect smoke in certain as well as in uncertain 

environment, thus fulfills the constraints and requirements 

of smart cities, increasing its suitability 

4. We conducted extensive experimentations on the newly 

created dataset and the previous benchmark datasets. The 

incurred results show that the proposed framework 

overwhelms other state-of-the-art methods in terms of false 

alarm rate and accuracy. 

The rest of this article is arranged as follows. The proposed 

methodology of our system is disclosed in Section 2. The 

experimental evaluations are described in Section 3. Lastly, the 

paper is concluded in Section 4 with its key findings and future 

directions. 

II. THE PROPOSED FRAMEWORK  

Smoke detection using hand-crafted features in smart cites 

surveillance is a tedious job, particularly when the smoke is in 

its initial stages or at long distance or in uncertain environment. 

The existing systems that use the traditional features extraction 

approach, produce a higher number of false alarm rate with 

limited smoke detection accuracy. Recently, several smoke 

detection methods are explored whose performance is 

reasonable as compared to the traditional methods. However, 

the major issue with these methods is their limited performance 

for uncertain and foggy environment. To overcome these 

issues, we investigated different CNN architectures and 

proposed an energy-efficient deep CNN based technique for 

smoke detection in surveillance videos captured in foggy and 

normal IoT environment. Our framework for smoke detection 

is overviewed in Fig. 1 whereas description of the proposed 

model parameters and implementation steps are given in Table 

1 and Algorithm 1, respectively.

 
Fig. 1. Energy-efficient deep CNN for smoke detection in certain and uncertain IoT environment.
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A. The Proposed CNN Architecture for Smoke Detection 

In our proposed method we explored and compared several 

CNN models with different parameter settings for smoke 

detection in both normal and foggy environments. After the 

comparison of different CNNs, we found that VGG-16 [30] is 

better than other models i.e., AlexNet [31] and GoogleNet [32]. 

For smoke detection in uncertain IoT environment, we modified 

the architecture of VGG-16 model according to our problem. 

Similar to other CNNs, our current VGG-16 is pre-trained on 

ImageNet [33] dataset for classification of images into 1000 

different categories. We fine-tuned this model with our own 

created dataset by adjusting the last fully connected layer from 

1000 to four classes to perform the intended classification of 

smoke and non-smoke in both normal and foggy IoT 

environments. Thus, modifying the last layer of the 

aforementioned architecture enabled our system to detect the 

smoke patterns effectively. The architecture of our employed 

CNN model is given in Fig. 2. 

The size of input image to the architecture is fixed to 224 × 

224 x 3 pixels. Each image is passed through five different 

convolutions of the architecture. First convolution comprises of 

two convolutional layers with the input size of 224 × 224 where 

64 kernels of size 3 × 3 with stride 1 are applied. The result is 

then forward propagated to the max pooling layer with 2 × 2 

kernel and stride 2 to get the maximum activations from feature 

maps. The second convolution is same as the previous one, 

consisting of two convolution layers with the input size of 112 

× 112 followed by a max pooling. Third convolution consists 

of three convolutional layers with 256 kernels of size 3 × 3 with 

stride 1 to the input of size 56 × 56 followed by a max pooling. 

The next two convolutions are same as the third one with input 

size of 28 × 28 and 14 × 14, respectively. A stack of these 

convolutional layers is followed by three fully-connected 

layers. The first and second fully-connected layers have 4094 

channels apiece, while the third fully-connected layer is 

modified from 1000 to 4 channels for classification of smoke 

and non-smoke in certain and uncertain environment. Finally, 

Softmax classifier is used to predict the probabilities of four 

target classes (Smoke, Smoke with fog, Non-Smoke and Non-

Smoke with fog). 

B. Motivations of Using VGG-16 for Smoke Detection 

The architecture of VGG-16 is different compared to other 

state-of-the-art models i.e., GoogleNet and AlexNet. In these 

models, filter size of initial convolutional layers is 11 × 11 or 7 

× 7 with strides of 3 to 5. With the larger size of convolution 

and wide strides, the convolutional filters can miss the 

important patterns of smoke area during the training process. 

The motivation of using VGG-16 is because of its 3 × 3 filter 

size for all convolutional layers with strides size of 1. Such 

setup helps the architecture to process and extract features from 

each pixel of the input image. On the other hand, VGG-16 is 

slightly different from VGG-19 with less number of 

convolutions and parameters and almost similar accuracy. The 

statistical comparison of VGG-16 with other CNN architectures 

is given in Table II. It can be observed from Table II that VGG-

16 is better than other state-of-the-art architectures [34] in terms 

of top-1 accuracy, top-5 accuracy and top-5 test error rate on 

large scale ImageNet dataset [35]. This motivated us to employ 
Table I 

Description of the model parameters in the proposed method. 
α   Training data 

β   Testing data 

γ   Validation data 

Ω   Trained model 
π   Validation accuracy graph 

D   Dataset 

A   Accuracy 

FP   False positive 

FN   False negative 

A    Accuracy 

P    Precision 
R    Recall 

F    F-measure 

Table II 

Comparative statistics of VGG-16 with other architectures. 

Models 
Parameters 

(millions) 

Top-1 
Accuracy 

(%) 

Top-5 
Accuracy 

(%) 

Top-5 test 

error (%) 

GoogleNet 60 69.8 89.3 7.9 
AlexNet 7 57.1 80.2 16.4 
VGG-16 138 70.5 91.0 7.0 

 
Fig. 2. Overview of the proposed deep CNN architecture for smoke detection in certain and uncertain environment. An input image is passed 

through five convolutions containing 13 convolutional layers, followed by three fully connected layers. The Softmax classifier provides the final 

predictions for the intended four classes including “Smoke”, “Smoke with fog”, “Non-Smoke” and “Non-Smoke with fog”.  
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a similar architecture for smoke detection in foggy 

environment, considering the requirements of smart cities in 

terms of recognition accuracy, false alarms, running time and 

energy-related constraints. 

Algorithm 1. Training and testing of the proposed system. 

Input: Dataset D, Train_Val.prototxt, split 

Initialization: € = load VGG-16 pretrained model,  

split = [0.2, 0.3, 0.5], training_parameters = [epoch = 30, 

learning rate = 0.001, batch size = 16, validation interval (in 

epochs) = 1, solver type = SGD (Stochastic Gradient Descent)] 

1. [α, β, γ] = prepare_data (D, split) 
  (Datatrain, Dataval, Datatest) = (split[0], split[1], split[2]) 

  α = random(D, Datatrain) 

  β = random(D, Dataval) 

  γ = random(D, Datatest) 

  return [α, β, γ] 

2. [Ω, π] = € (α, β, training_parameters) 

3. [FP, FN, A, P, R, F] = Ω (γ) 

4. Output: [FP, FN, A, P, R, F] 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we present the detail about the datasets used 

in the experimental assessment of the proposed system. Next, 

we compare the performance of our proposed architecture with 

other state-of-the-art through different evaluation schemes. 

Furthermore, we compare the results of our employed method 

with recent smoke detection methods. Finally, to prove that our 

system is functional in smart cities we check the adaptability 

and performance of our system in real-time. 

A. Details of the Datasets 

 The dataset used for experimentation consists of images with 

four different classes: “Non-Smoke”, “Smoke”, “Non-Smoke 

with fog” and “Smoke with fog”. In this dataset, the Non-

Smoke and Smoke classes belong to three benchmark datasets 

[36-38] while the other two classes “Non-Smoke with fog” and 

“Smoke with fog” are synthetically created by adding fog to 

each image of the first two classes. The dataset comprises of a 

total of 72012 images, extracted from videos. For the evaluation 

of our system, we used our recent strategy [11] by using 20% 

data for training and the rest of 30% and 50% for validation and 

testing, respectively. Using this distribution of data, our model 

is trained with 3495 Non-Smoke images, 3706 Smoke images, 

3495 Non-Smoke with fog images and 3706 Smoke with fog 

images. Table III represent the overall statistics of training, 

validation and testing data while representative images are 

visualized in Fig. 3. For comparison of the proposed system 

with state-of-the-art techniques [29] and [28], we also used the 

seven publicly accessible videos for testing [39, 40]. The 

complete details, name of each video, duration, frame rate and 

description are given in Table IV. For simplicity, these videos 

are termed as V1 to V7, respectively. The representative images 

of these seven test videos are given in Fig. 4. 

B. Comparison with other CNN models 

In this section, the comparison of our proposed model with 

other CNN models is presented using the validation and test set 

of the overall integrated dataset. The validation accuracy of our 

proposed model and other state-of-the-art architecture with 

respect to each epoch is visualized in Fig. 5. To further evaluate, 

the performance of our method, we have used two types of 

evaluation matrices for each CNN model. First scheme of 

evaluation used false-positive (false alarm rate), false negative 

and accuracy through which our system is compared with 

AlexNet and GoogleNet and the results are given in Table V. 

 
Fig. 3. Representative images of Non-Smoke, Smoke, Non-Smoke with fog and Smoke with fog from the dataset. 
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Fig. 4. Representative images of seven smoke videos. 

 

Table III 

Overall statistics of training, validation and testing data for the 

proposed system. 

Data 

distribution 

Total 

images 

Data 

percentage 

Non-

Smoke 
Smoke 

Non-

Smoke 

with fog 

Smoke 

with 

fog 

Training 

Data 
14402 20% 3495 3706 3495 3706 

Validation 

Data 
21604 30% 5242 5560 5242 5560 

Testing 

Data 
36006 50% 8737 9266 8737 9266 

 

TABLE IV 

Detail of test videos. 
Video 

Number 

Name Duration 

(secs) 

Frame 

rate 

Description 

V1 Cotton_rope_smoke
_04.avi 

115 25 Smoke  from cotton rope  
with person standing 

around it 

V2 Dry_leaf_smoke_02.

avi 

48 25 Smoke from dry leaves 

V3 sBtFence2.avi 140 10 Smoke at long distance 

including smoke color 

background with moving 
person 

V4 sMoky.avi 60 15 Including smoke color 

background 

V5 sParkingLot.avi 69 25 Smoke in a parking lot 
with moving object and 

tree shaking 

V6 sWasteBasket.avi 90 10 Smoke near a red color 

waste basket 

V7 sWindow.avi 16 15 Smoke in bucket 

captured from long 

distance window 

 

Table V 

Comparative results using test data on evaluation scheme1. 

Model FP (%)  FN (%) A (%) 

AlexNet  3.39 4.16 95.87 

GoogleNet  3.17 2.01 96.11 

Proposed 2.30 2.01 97.72 

 

It can be observed from Table V that AlexNet achieved the 

worst accuracy, false-positive and false negative score as 

compared to other models. GoogleNet attained better results 

than AlexNet but its accuracy is still low with high false alarm 

rate as compared to our proposed method. The proposed 

method achieves much better results from the previous two 

models and has minimum false alarm rate of 2.30, minimum 

false-negatives rate of 2.01 and the highest accuracy of 97.72%. 

Thus using the first scheme of evaluation, the better 

performance of our approach can be witnessed compared to 

other models. 

Fig. 5. Validation accuracy of different CNN models for each training 

epoch. 

We also use the second scheme of evaluation to further 

inspect the performance of our architecture by comparing with 

other state-of-the-art models. In the second scheme, evaluation 
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matrices consist of P, R and F where P is considered as the 

predicted positive rate calculated for a system and given in Eq. 

1. Whereas R in contrast, refers to sensitivity (true positive rate) 

of a system and given in Eq. 2. As P and R refer to true positive 

and true negative rate, thus using P or R individually for 

performance evaluation of a system is a biased decision. To 

evaluate our experimental results more accurately we used F 

along with P and R. The value of F is calculated by computing 

the harmonic mean of P and R given in Eq. 3 by considering 

both true positive/negative rate of the system. Experimental 

results using the second evaluation scheme on a test set are 

shown is Table VI. From the results, it can be perceived that the 
P and F of AlexNet and GoogleNet are same but in terms of R 

GoogleNet is better than AlexNet. Our proposed method 

dominated both models i.e., GoogleNet and AlexNet using all 

evaluation matrices of second scheme. Remarkably, our 

proposed architecture overwhelms all the state-of-the-art 

models in terms of both evaluation schemes, which shows its 

effectiveness. 

 

𝑷 =
TP

TP+FP
           (1) 

 

𝑹 =
TP

TP+FN
           (2) 

𝑭 = 2 × (
P ×R

P+R
)         (3) 

 

Table VI 

Comparative results using test data on evaluation scheme2. 

Model P R F 

AlexNet 0.96 0.95 0.96 

GoogleNet 0.96 0.96 0.96 

Proposed 0.98 0.97 0.98 

C. Comparison of our Method with other State-of-the-Art 

Smoke Detection Methods 

The performance evaluation of our proposed system with 

respect to other state-of-the-art smoke detection techniques is 

presented in this section. Proposed results are evaluated using 

test set of our own created dataset along with seven test videos 

as mentioned in Section III (A). Our presented technique is first 

compared with five different state-of-the-art smoke detection 

methods. The comparison with existing methods in literature is 

given in Table VII. The evaluation matrices used for 

comparison with recent methods are accuracy and false alarm 

rate. Furthermore, the processing time in frame per second (fps) 

is given with system specifications. From Table VII, we can 

observe that [41] is worst among all the other methods due to 

its high false alarm rate, low fps and accuracy. The accuracy of 

[28] is lower from all the other methods but its false alarm rate 

and fps are better than [42] and [41]. The method [42] 

performed average in terms of all the evaluation matrices. The 

best existing methods are [27] and [29] where [27] 

outperformed all the existing methods in terms of accuracy and 

[29] is best in terms of false alarm rate and highest fps against 

all other methods with lower accuracy. However, all the 

existing methods have pitfalls of lower accuracy, false alarm 

rate and processing of low fps. Our proposed system resolved 

the issue of accuracy and reduce the false alarm rate up to 

2.30% but our system is still slower than [29] in terms of fps. 

TABLE VII 

Comparison with different smoke detection methods. 

Method 
Accuracy 

(%) 

False 

positive 

(%) 

fps System specs 

[41] 80.08 15.92 5 - 

[42] 90.87 6.63 5.7 
System equipped with 

Core i5 2.4 GHz CPU 

[28] 47.71 5.0 25 

This system has AMD 

Phenom (tm) II with 

X4 955 and 3.22 GHz 
processor capacity and 

is equipped with 8 GB 

of main memory 

[27] 94.81 - 5.2 
System processor is 
2.4-GHz and is Core i5 

model. 

[29] 84.85 4.29 61 

This system has Nvidia 
Geforce GTX with 

980M GPU and DDR3 

RAM with 16 GB 

capacity. The system 

model is Core i7-4720 

HQ CPU 

Proposed 97.72 2.30 31.33 

Proposed system is 
equipped with NVidia 

GeForce GTX TITAN 

X (Pascal). Our system 
has Ubuntu operating 

system installed. 

Processor model is 
Core i5 of Intel 

company and builtin 64 
GB of main memory 

TABLE VIII 

Comparison with two state-of-art techniques using seven test videos. 

Video 
[28] [29] Proposed 

P R F P R F P R F 

V1 0.97 0.99 0.98 1 0.79 0.88 0.98 0.96 0.97 

V2 1 0.93 0.96 0.99 0.94 0.97 0.99 0.95 0.97 

V3 0.2 0.32 0.3 0.93 0.96 0.95 0.93 0.92 0.92 

V4 0.86 0.57 0.69 0.99 0.77 0.87 0.99 0.97 0.98 

V5 0 0 - 0.97 0.8 0.88 0.99 0.98 0.99 

V6 0.96 0.79 0.43 0.97 0.93 0.95 0.99 1 1 

V7 0 0 - 0.85 1 0.92 1 0.91 0.95 

average 0.57 0.51 0.48 0.95 0.88 0.91 0.98 0.95 0.96 

 

The proposed system is also compared with two recent 

methods [29] and [28] using the seven test videos. For further 

exploration, the second scheme of evaluation is used as 

discussed in Section III (B). The dominance of the proposed 

system can be clearly perceived from Table VIII. The F of [28] 

shown in the Table is 0.48 and the best score acquired is 0.98 

for V1. The minimum value of P for this method is observed 

for V7 and the maximum P value achieved is 1.0 for V2. The 

average F value for this method is not convincing to be 

implemented in smart cities. Similarly, the average F value 

calculated of [29] is 0.91 and maximum value of 0.97 is 

achieved by this method is for V2. The P value for above-

mentioned method lies between 0 and 1 for V7 and V2, 

respectively. There is 0.43 unit improvement by [29] in 

accuracy as compared to the previous discussed method. The 

proposed system in contrast achieves much higher average F 

score as compared to both these applied techniques. Our system 

achieved 0.98, 0.95 and 0.96 P, R and F values, respectively. 

The result comparison from this table assures the effectiveness 
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of the proposed system over the existing state-of-the-art 

techniques. 

D. Running time performance of the system  

The experiments of our system are evaluated using a 

computer with a GPU of NVidia TITAN X (Pascal) having 12 

GB onboard memory with a deep learning framework caffe [43] 

running and Intel Core i5 CPU with Ubuntu OS and 64 GB 

RAM. It can process 31.33 fps based on this setting and 

processing of 30 frames are enough to detect smoke in real-

time. In addition, the normal camera can capture 25 to 30 fps, 

therefore our system is faster enough to detect smoke in real-

time. The time comparison of the proposed system with state-

of-the-art methods is given in Table IX. 

 
Table IX 

Average processing time of single frame in millisecond (MS) of 

the proposed system and state-of-the-art smoke detection methods 

using seven test videos. 

Video [28] [29] Proposed 
V1 73.21 16.30 30.29 
V2 62.25 17.45 31.5 
V3 63.33 21.31 41.28 
V4 67.76 27.60 57.11 
V5 69.44 18.09 39.76 
V6 67.62 17.30 37.77 
V7 66.56 22.02 48.08 

Average 67.16 20.01 40.82 
 

It can be observed from results that the worst method is [28] 

having a high processing time of average 67.16 millisecond 

(MS) per frame. The authors in [29] achieved the best 

performance in terms of processing time and average 20 MS per 

frame. However, its limited accuracy and false alarm rate (2 

times greater than ours) restricts its usefulness. Our proposed 

system attains the normal reasonable processing time of 40.82 

MS per frame with highest accuracy and minimum false alarm 

rate, which means that our system can process up to 31 fps that 

is significantly enough for real-time detection of smoke in smart 

cites in IoT certain and uncertain environment. 

 
TABLE X 

Performance comparison of our proposed architecture with other 

state-of-the-art architectures.  

Method Name 

Number of 

layers 

Net power 

consumption (W) / 
batch size 

Memory 

utilization (MB) / 
batch size 

AlexNet 8 13.4 800 

GoogleNet 22 13.5 2100 

VGG-19 19 13.8 1900 

Proposed 16 13 1850 

 

Table X compares our proposed method with other 

architectures in terms of number of layers, Net power 

consumption per batch size and memory utilization per batch 

size (comparison is based on 16 images per batch). From the 

table, it can be seen that AlexNet has minimum number of 

layers and memory utilization per batch also. The limitation of 

this method is its higher net power consumption and lower 

accuracy of 95.87%. GoogleNet has 22 layers with memory 

utilization of 2100 MB which is highest from all the other 

models and an average power consumption of 13.5 W. VGG-

19 has less number of layers and memory utilization than 

GoogleNet but consumes comparatively more energy. In 

contrast to these architectures, our CNN model consists of an 

average number of layers with lower power consumption and 

minimum memory utilization except AlexNet. Seeing the 

overall performance evaluation metrics, number of layers, net 

power consumption per batch and memory utilization per batch, 

we claim that our proposed system is the better aspirant 

compared to the other state-of-the-art architectures and 

techniques for detection of smoke in smart cites normal 

environment as well as in foggy environment IoT 

environments. 

IV. CONCLUSION AND FUTURE WORK 

CNNs gained great success recently by addressing problems 

in various fields and researchers applied it for detection of 

different abnormal events such as smoke, fire, disasters and 

other calamities. Fire is one of the most precarious event and it 

is very essential for disaster management to detect it in its initial 

stages in smart cities. Detection of smoke before it harms 

human lives and properties is very essential in its early stages. 

Unlike the fire flames, smoke can be identified from far away, 

as it moves in upward direction. Several smoke detection 

methods are presented by different researches till date. These 

methods are limited only to normal/certain environment, while 

in foggy or uncertain environment. Moreover, these methods 

are computationally expensive and difficult for them to process 

surveillance video streams in real-time. With these motivations, 

an energy-efficient CNN based smoke detection in normal and 

foggy or uncertain IoT environment method is proposed in this 

work. Our proposed method examines different state-of-the-art 

CNN models for the detection of smoke in both normal and 

foggy environments and propose an energy-efficient light-

weight CNN architecture that is computationally inexpensive 

for real-time processing of live surveillance video streams. 

Secondly, we created our own benchmark dataset for the 

detection of smoke in uncertain environment. Furthermore, our 

proposed method dominates other state-of-the-art techniques in 

terms of false alarm rate and accuracy of the system. Finally, 

our system is capable to detect smoke in uncertain environment. 

Thus, it can be concluded that our proposed system is more 

suitable aspirant for the disaster management system to deploy 

it for the detection of smoke and fire in its early stages in smart 

cites normal and foggy or uncertain IoT environment. 

This work is mainly focused on early smoke detection in 

normal and foggy or uncertain IoT environments with a real 

time processing. As future work, our strategy is to detect and 

localize the smoke for the extraction of detail information such 

as area of smoke, growth rate and distance from the camera etc. 

Moreover, a light-weight trained model can be deployed on 

embedded systems and board like FPGAs to increase the frame 

rate and improve decision making for integration with other IoT 

applications regarding prioritization [44], localization [45, 46], 

energy efficiency [47], greenery [48], security [49] and 

healthcare [50]. 
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