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a b s t r a c t 

Fire disasters are man-made disasters, which cause ecological, social, and economic damage. To min- 

imize these losses, early detection of fire and an autonomous response are important and helpful to 

disaster management systems. Therefore, in this article, we propose an early fire detection framework 

using fine-tuned convolutional neural networks for CCTV surveillance cameras, which can detect fire in 

varying indoor and outdoor environments. To ensure the autonomous response, we propose an adaptive 

prioritization mechanism for cameras in the surveillance system. Finally, we propose a dynamic channel 

selection algorithm for cameras based on cognitive radio networks, ensuring reliable data dissemination. 

Experimental results verify the higher accuracy of our fire detection scheme compared to state-of-the-art 

methods and validate the applicability of our framework for effective fire disaster management. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Disaster management, as a hybrid research area, has attracted

the attention of many research communities such as business,

computer science, health sciences, and environmental sciences. Ac-

cording to federal emergency management agency policy, there

are two main categories of disaster: (1) Technological such as

emergencies related to hazardous materials, terrorism, and nuclear

power plants etc., and (2) Natural such as floods, earth quakes,

and forest fires etc. Regardless of the nature of the disaster, certain

characteristics are necessary for effective management of almost

all of them. These features include prevention, advance warning,

early detection, early notification to the public and concerned au-

thorities, response mobilization, damage containment, and provid-

ing medical care as well as relief to affected citizens [1] . Disaster

management has four main phases including preparedness, mitiga-

tion, response, and recovery, each of which requires different types

of data, which are needed by different communities during disas-

ter management. Such data can be processed using data analysis

technologies such as information extraction, information retrieval,

information filtering, data mining, and decision support [ 2 , 3 ]. An

overview of this data flow in disaster management is shown in

Fig. 1 . 
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Fig. 1 shows that data is gathered from different sources dur-

ng disaster management, which are helpful for the detection of

isaster, the response of concerned authorities against the disaster

nd its recovery. Among the given resources, online streaming data

rom CCTV cameras can be helpful for early detection of different

isasters such as fire [4] and flood [5] , which in turn can facil-

tate disaster management teams in quick recovery and reducing

he loss of human lives. 

Fire disasters mainly occur due to human error or the failure

f a system, causing economic as well as ecological damage along

ith endangering human lives [6] . According to [7] , wildfire disas-

ers alone in the year 2015 resulted in 494,0 0 0 victims and caused

amage worth US$ 3.1 billion. Each year, an area of vegetation of

0,0 0 0 km 

2 is affected by fire disasters in Europe. The statistic for

re damage is about 10 0,0 0 0 km 

2 in Russia and North America.

ther examples of fire disasters include (1) the disaster of Arizona

USA, June 2013) which ruined 100 houses and killed 19 firefight-

rs, and (2) the forest fire of California (August 2013) which burned

n area of 1042 km 

2 and damaged around 111 structures, incurring

 firefighting cost of $127.35 million [8] . Considering these exam-

les of damage, early detection of fire is of paramount interest to

isaster management systems, so as to avoid such disasters. In this

ontext, researchers have explored different approaches to fire de-

ection including conventional fire alerting systems and visual sen-

ors based systems. The systems belonging to the first category are

ased on ion or optical sensors, needing close proximity to the fire,

nd thus failing to provide additional information such as the fire

ize, location, and degree of burning. In addition to this, such sys-
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Fig. 1. Flow of data in disaster management system. 

t  

l  

w  

s

 

s  

e  

o  

e  

w  

s  

(  

o  

t  

m  

s  

e  

u  

i  

t  

t  

l  

m  

F  

s  

t  

t  

t  

p

 

fi  

(  

m  

b

(  

 

 

 

 

 

(  

 

ems involve heavy human intervention, such as visiting the fire

ocation to confirm the fire in the event of any fire alarm. To cope

ith these limitations, many fire detection systems based on visual

ensors have been presented [9–12] . 

Visual sensors based fire detection systems are motivated by

everal encouraging advantages including: (1) low cost due to the

xisting setup of installed cameras for surveillance, (2) monitoring

f larger regions, (3) comparatively fast response time due to the

limination of waiting time for heat diffusion, (4) fire confirmation

ithout visiting the fire location, (5) flexibility for the detection of

moke and flames through adjustment of certain parameters, and

6) the availability of fire details such as size, location, and degree

f burning. Due to these characteristics, they have attracted the at-

ention of many researchers and as a result, many fire detection

ethods [12–17] have been investigated based on numerous vi-

ual features, achieving good performance. But still such methods

ncounter several problems such as the complexity of the scenes

nder surveillance due to people and objects looking like fire, the

rregularity of lighting (night, day, artificial, shadows, light reflec-

ions, and flickering), and the low quality of the captured images,

heir lower contrast, and lower transmission of signals. These prob-

ems demand urgent solutions from the concerned research com-

 

unities due to their importance to disaster management systems.

urther, sending all the streaming data of multiple cameras during

urveillance is impractical due to network constraints. In addition

o this, an alert of fire and its associated keyframes need an au-

onomous and reliable communication medium for transmission,

o enable the disaster management team to handle it as early as

ossible. 

To address the aforementioned problems, we propose an early

re detection framework using convolutional neural networks

CNNs) and the internet of multimedia things (IoMT) for disaster

anagement. To this end, the major contributions of this study can

e summarized as follows: 

1) Unlike traditional hand-engineered features, which are not suit-

able for the detection of several types of fire, we incorporate

deep features of CNNs in our fire detection framework, which

can detect fire at an early stage under varying conditions. For

this purpose, we used Alexnet as a baseline architecture and

fine-tuned it according to our problem, considering the accu-

racy and complexity. 

2) Due to the emergency nature of fire for disaster management,

we propose an adaptive prioritization mechanism for cameras

in the surveillance system, which can adaptively switch the sta-
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Fig. 2. Early fire detection using CNN with reliable communication for effective disaster management. 
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tus of camera nodes based on their importance. Furthermore,

our system contains a high-resolution camera that can be acti-

vated for capturing the important scenes when fire is detected.

This can be helpful for disaster management systems in con-

firming the fire and analyzing the disaster data in real time. 

3) We propose a dynamic channel selection algorithm for high-

priority cameras based on cognitive radio networks, ensuring

reliable data dissemination and an autonomous response sys-

tem for disaster management. 

The rest of the paper is structured as follows: Related work on

fire detection and disaster management is presented in Section 2 .

Our proposed work is explained in Section 3 . Experimental re-

sults are provided in Section 4 . Finally, our work is concluded in

Section 5 . 

2. Related work 

In this section, we first critically discuss the fire detection

methods reported in the current literature along with their

strengths and weaknesses. Next, we briefly highlight our approach

to solving the problems of some of the current methods for early

fire detection. Finally, we discuss how early fire detection can be

used in effective disaster management systems. Recent advance in

technology have resulted in a variety of sensors for different ap-

plications such as wireless capsule sensors for visualization of the

interior of the human body [18] , vehicle sensors for obstacle detec-

tion [19] , and fire alarm sensors [20] . Current fire alarm sensors,

such as infrared, ion, and optical sensors, need close proximity to

the heat, fire, radiation or smoke for activation, hence such sensors

are not considered good candidates for environments of a critical

nature [12] . As an alternative to these sensors, vision-based sen-

sors are widely used, which provide many advantages compared

to the traditional sensors, such as lower cost, fast response time,
arger coverage of surveillance area, and less human intervention,

voiding the need to visit the location where the fire alert has been

riggered [21] . Although vision-based sensors have several encour-

ging properties, they still encounter some problems with varying

ighting conditions, scene complexity, and the lower image qual-

ty of cameras due to network constraints. Thus, researchers have

ade attempts to address these issues. For instance, the authors in

15] explored temporal as well as spatial wavelet analysis and pix-

ls in dynamic regions. Their method achieved good results but it

s based on several heuristic thresholds, making it impractical for

eal-world fire detection applications. 

Liu et al. [10] investigated three different models, including

pectral, spatial, and temporal, for fire regions in images. How-

ver, their method is based on an assumption considering the ir-

egular shape of fire, which is not always the case as moving ob-

ects can also change their shape. Another fire detection approach

s presented in [22] for forests using contours based on wavelet

nalysis and FFT. The authors in [23] investigated the YCbCr colour

odel and devised new rules for the effective separation of lumi-

ance and chrominance components, which led them to a rule-

ased pixels classification of flame. Another colour model YUV

long with motion was explored by the authors in [24] for clas-

ification into candidate pixels for fire or non-fire. Besides the in-

estigation of color models, specific low-level features of fire re-

ions such as skewness, color, roughness, area size etc. have also

een used for determining the frame-to-frame changes, which in

ombination with a Bayes classifier can recognize fire [17] . Another

ethod is presented in [25] considering a lookup table for detec-

ion of fire regions and their confirmation using temporal variation.

his method is based on heuristic features, decreasing the certainty

f getting the same results while changing the input data. 

Considering the heuristic features of [25] , the authors in

6] presented a decision rule-based fire detection method using

he dynamic analysis of fire along with RGB/HSI color space. Their
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Fig. 3. Architecture of the proposed CNN. 
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ethod considers the growth of pixels with the disordered proper-

ies of fire for detection. However, it fails to differentiate between

oving regions and fire as it is based on frame-to-frame differ-

nce. In [26] , a fire detection method is proposed by comparison of

 normal image with its color information for tunnels. The method

s suitable only for static fire situations due to its use of many ad

oc parameters. 

Analyzing the above mentioned fire detection techniques, it

s observed that the color-based fire detection methods generate

ore false positives due to their sensitivity to variation in bright-

ess and shadows. For instance, such methods may interpret red-

olored vehicles or people wearing red clothes as fire due to its

ominant amount. Later on, a possible solution was introduced

ased on the fact that fire changes its shape continuously, which

an differentiate it from moving rigid objects. An example of such

ethods is presented in [14] , where a feature vector is extracted

sing the optical flow and physical characteristics of fire and can

ifferentiate the flame from moving rigid objects. Another similar

ethod based on dynamic textures and shape features is investi-

ated in [27] . 

Considering the aforementioned fire detection methods, it can

e observed that some of them are too naïve; their execution

ime is fast but such methods compromise on accuracy, produc-

ng a large number of false alarms. Conversely, some methods have

chieved good fire detection accuracies but their execution time is

oo high, hence they cannot be applied in real-world environments

specially in critical areas where a minor delay can lead to a huge

isaster. Therefore, for more accurate and early detection of fire,

e need a robust mechanism that can detect fire during varying

onditions and can send the important keyframes and alert imme-

iately to disaster management systems. 

. The proposed framework 

Early fire detection in the context of disaster management sys-

ems during surveillance of public areas, forests, and nuclear power

lants can result in the saving of ecological, economic, and so-

ial damage. However, early detection is a challenging problem

ue to varying lighting conditions, shadows, and the movement

f fire-colored objects. Thus, there is a need for an algorithm that

an achieve better accuracy in the aforementioned scenarios while

inimizing the number of false alarms. To achieve this goal, we

xplored deep CNNs and devised a fine-tuned architecture for early

re detection during surveillance for effective disaster manage-

ent systems. After successful fire detection, another desirable re-
uirement is to send an immediate alert to the disaster manage-

ent system along with the representative keyframes. To this end,

e devised an adaptive prioritization scheme for the camera nodes

f the surveillance system, considering the contents they perceive.

inally, the data of high-priority nodes is transmitted using a reli-

ble channel selected through our reliable channel selection algo-

ithm. Our system is overviewed in Fig. 2 . 

.1. Convolutional neural network architecture 

Convolutional neural networks have exhibited state-of-the-art 

erformance in a variety of computer vision tasks including im-

ge classification and retrieval [28–30] , object detection [31,32] ,

ocalization [33] , and image segmentation [34] . Their success in

uch a wide variety of applications is attributed to their hierar-

hical architecture, where they learn discriminative features from

aw data automatically. A typical CNN consists of different types

f processing layers including convolution, pooling, and fully con-

ected. These layers are arranged in such a way that the output of

ne layer becomes the input of the next layer. At each convolution

ayer, a number of kernels are applied on the input data to gener-

te feature maps. Pooling layers select maximum activations within

mall neighbourhoods of these features maps to reduce their di-

ensionality and introduce translation invariance. Fully connected

ayers followed by stacks of convolutional and pooling layers model

igh-level abstractions in the data and serve as high-level repre-

entations of the input. The weights of all the convolutional ker-

els and neurons in the fully connected layers are learnt during

he training process and correspond to essential characteristics of

he training data, useful for performing the intended classification

35] . 

The model we used had a similar architecture to the AlexNet

odel [36] , with modifications according to our problem of inter-

st. It had a total of five convolution layers, three pooling layers,

nd three fully connected layers as, shown in Fig. 3 . As input, the

odel receives color images of size 224 × 224 × 3. In the first con-

olution layer, 96 kernels of size 11 × 11 are applied with a stride of

 on the input image to generate 96 feature maps. The first pool-

ng layer selects maximum activations from these feature maps

n small neighborhoods of 3 × 3 with a stride of 2 pixels. Conse-

uently, the size of the feature maps is reduced by a factor of 2.

he second convolution layer consists of 256 kernels of size 5 × 5,

ollowed by a max pooling layer similar to the first one. It is fol-

owed by a stack of 3 consecutive convolution layers having 384,

84, and 256 kernels, respectively, with uniform kernel sizes of
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Fig. 4. Sample query images along with their probabilities for CNN-based fire detection. 

Fig. 5. Flow diagram of dynamic channel selection algorithm and reliable commu- 

nication. 
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s  
3 × 3. The last pooling layer is similar in operation to the first two

pooling layers. At the end, there exist three fully connected layers

each having 4096, 4096, and 2 neurons (corresponding to the num-

ber of classes). The output of the last layer is fed into the Softmax

classifier which computes probabilities for the two classes. 

Convolutional neural networks usually require a lot of data for

training due to the large number of parameters needed to prop-

erly tune these networks. Especially the last fully connected layers

are very prone to overfitting due to the large number of parame-

ters [37] . To avoid the risk of overfitting in these layers, they are

followed by dropout layers, having a dropout ratio of 50%. Several

models were trained using the collected training data and their

classification performance was assessed using a variety of bench-

mark datasets. We also evaluated the transfer learning approach
o attempt improving classification accuracy, and we observed that

t helped us improve classification accuracy by 4–5% on the test

et. Transfer learning works on the principle of reusing previously

earned knowledge to solve problems more effectively and effi-

iently [38] . Humans have a natural tendency to apply knowledge

cross different domains. In the area of deep learning, it has ex-

ibited promise in a wide range of areas. In the current context,

e used a pre-trained AlexNet model (trained on ImageNet [39] )

nd fine-tuned it with our dataset by modifying the last fully con-

ected layer and keeping a slower learning rate (0.001). The slow

earning rate allows the previously learned parameters to be mini-

ally adjusted in order to perform the intended classification task.

odel fine-tuning was performed for 10 epochs, achieving an im-

rovement of about 5% in classification accuracy compared to the

reshly trained model. 

.2. CNN-based fire-detection 

After the training and fine-tuning process, a target model is

chieved which can be used for prediction of fire at early stages.

nlike conventional fire detection methods, where a lot of effort

s required for pre-processing as well as feature engineering, our

roposed CNN-based method does not require any pre-processing.

urther, it avoids the conventional time-consuming and tedious ap-

roaches of extracting hand-crafted features as it learns very pow-

rful features automatically from the provided data in raw form.

n addition to this, the proposed CNN-based model learns details

t small scales, enabling it to detect fire even at small scale, i.e., in

he early stages. For testing, the query image is passed through the

roposed model, which results in probabilities for both classes of

re and normal. Based on the higher probability, the image is as-

igned to its appropriate class. An example of query images along

ith their probabilities is shown in Fig. 4 . 

.3. Dynamic channel selection using cognitive radio networks 

Due to congestion, dedicated spectrum allocation is not a fea-

ible solution for multimedia surveillance systems. Therefore, it is
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Table 1 

Details of dataset 1. 

Video name Resolution Frames Frame rate Modality Description 

Fire1 320 × 240 705 15 Fire Fire in bucket with person walking around it. 

Fire2 320 × 240 116 29 Fire Fire at comparatively long distance from the camera in a bucket 

Fire3 400 × 256 255 15 Fire Big forest fire 

Fire4 400 × 256 240 15 Fire Same as description of Fire3 

Fire5 400 × 256 195 15 Fire Same as description of Fire3 

Fire6 320 × 240 1200 10 Fire Fire on ground with red colour 

Fire7 400 × 256 195 15 Fire Same as description of Fire3 

Fire8 400 × 256 240 15 Fire Same as description of Fire3 

Fire9 400 × 256 240 15 Fire Same as description of Fire3 

Fire10 400 × 256 210 15 Fire Same as description of Fire3 

Fire11 400 × 256 210 15 Fire Same as description of Fire3 

Fire12 400 × 256 210 15 Fire Same as description of Fire3 

Fire13 320 × 240 1650 25 Fire An indoor environment with fire in bucket 

Fire14 320 × 240 5535 15 Fire Paper box inside which fire is produced. 

Fire15 320 × 240 240 15 Normal Smoke visible from closed window with appearance of red reflection of sun on the glass. 

Fire16 320 × 240 900 10 Normal Smoke pot near red-coloured dust bin. 

Fire17 320 × 240 1725 25 Normal Smoke on ground with nearby moving vehicles and trees 

Fire18 352 × 288 600 10 Normal Smoke far away from camera on hills 

Fire19 320 × 240 630 10 Normal Smoke on red-coloured ground 

Fire20 320 × 240 5958 9 Normal Smoke on hills with nearby red-coloured buildings 

Fire21 720 × 480 80 10 Normal Smoke at a larger distance behind moving trees 

Fire22 480 × 272 22,500 25 Normal Smoke behind hills in front of UOS. 

Fire23 720 × 576 6097 7 Normal Smoke above hills 

Fire24 320 × 240 342 10 Normal Smoke in room 

Fire25 352 × 288 140 10 Normal Smoke at a larger distance from camera in a city 

Fire26 720 × 576 847 7 Normal Same as description of Fire24 

Fire27 320 × 240 1400 10 Normal Same as description of Fire19 

Fire28 352 × 288 6025 25 Normal Same as description of Fire18 

Fire29 720 × 576 600 10 Normal Red-coloured buildings covered by smoke 

Fire30 800 × 600 1920 15 Normal A lab with red-coloured front wall where a person moves holding a red ball 

Fire31 800 × 600 1485 15 Normal A lab with red-coloured tables and person moving with red-coloured bag and ball. 

Table 2 

Comparison with different fire detection methods on dataset 1. 

Technique False Positives (%) False-Negatives (%) Accuracy (%) 

Proposed after 

fine tuning 

9.07 2.13 94.39 

Proposed without 

fine tuning 

9.22 10.65 90.06 

[13] 11.67 0 93.55 

[49] 13.33 0 92.86 

[50] 5.88 14.29 90.32 

RGB [51] 41.18 7.14 74.20 

YUV [51] 17.65 7.14 87.10 

[23] 29.41 0 83.87 

[6] 11.76 14.29 87.10 

Table 3 

Comparison with different fire detection methods on dataset 2. 

Technique Precision Recall F-Measure 

Proposed after fine tuning 0.82 0.98 0.89 

Proposed without Fine Tuning 0.85 0.92 0.88 

[46] 0.4–0.6 0.6–0.8 0.6–0.7 

[23] 0.4–0.6 0.5–0.6 0.5–0.6 

[54] 0.3–0.4 0.2–0.3 0.2–0.3 

[55] 0.6–0.7 0.4–0.5 0.5–0.6 
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i  
mperative to use a reliable communication mechanism, which can

e provided by cognitive radio (CR) by preserving the limited re-

ources of surveillance systems and improving their spectrum uti-

ization [40,41] . The accessing mechanism for the spectrum in CR-

ssisted sensor networks is of an opportunistic nature and hence

dditional hardware of reasonable cost with cognitive properties is

equired to enable the delay-sensitive applications to work prop-

rly [42] . It is evident from recent studies that spectrum-related

roblems such as scarcity, bandwidth, long-range communication,
nd cost can be resolved by the incorporation of CR in surveillance

etworks [43,44] . 

In spectrum sensing (SS), detection of a licensed node’s activity

s important and to ensure the needs of CR networks, a low prob-

bility of false alarms with a higher probability of detection is re-

uired. To increase the performance of SS, co-operation among the

ognitive nodes is desirable. With this motivation, we employed a

o-operative SS algorithm for multi-visual sensors surveillance sys-

ems, whose main flow diagram is given in Fig. 5 . 

Avoiding the conventional packet transmission of the first-in-

rst-out mechanism, the presented framework assigns more privi-

eges to high priority cameras, allowing them to send their packets

eliably to the sink node. Our co-operative SS algorithm consists of

 CR-assisted cameras, each with a mechanism of energy detection

or local SS [45] . The decision of each individual camera is sent to

he sink node, which measures the channel conditions and ranks

hem based on the results of SS and channel quality parameters.

t the end, the most reliable channels are assigned to high priority

ameras by the sink node, which can be used for the dissemination

f important fire frames to disaster management systems. 

. Results and discussion 

This section explains in detail the experiments conducted to

valuate the performance of the proposed framework. Firstly, we

rovide the experimental setup along with its details. Next, we

xplain different experiments performed on various datasets from

he literature and compare our work with the state-of-the-art

ethods. Finally, we present the strengths of our method against

ifferent attacks. 

.1. Experimental details 

All the experiments were performed using a dataset of 68,457

mages, collected from different fire datasets of both images and
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Fig. 6. Sample images from the dataset 1 videos, with and without fires. 
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videos, such as Foggia’s video dataset [13] containing 62,690

frames, Chino’s dataset [46] of 226 images, and other datasets [12,

47] . Following the experimental setup of [13] , we used 20% of the

data from this dataset for training and 80% for testing. To this end,

we trained our model with 10,319 images, of which 5258 images

contain fire and 5061 are normal images without fire. The pro-
osed model was trained by the system with specifications as fol-

ows: Intel Core i5 CPU equipped with 64 GB RAM with Ubuntu

S, NVidia GeForce GTX TITAN X (Pascal) having 12 GB onboard

emory, and Caffe deep learning framework [48] . The rest of the

xperiments were conducted using MATLAB R2015a with a Core i5

ystem containing 8 GB RAM. 
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Fig. 7. Sample images from the dataset 2. 
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.2. Experiments on different datasets 

We mainly focused our experiments on two datasets: Foggia’s

ideo dataset [13] and Chino’s dataset [46] . The first dataset con-

ists of 31 videos with both indoor and outdoor environments,

f which 14 videos contain fire and the remaining 17 videos are

ithout fire. The reasons for selecting this dataset include its large

umber of videos captured in different scenes in indoor and out-

oor environments as well as its challenges. For instance, the last

7 videos contain fire-like objects and situations, which can be

redicted as fire, making the classification more difficult. To this

nd, color-based methods may fail to differentiate between real fire

nd scenes with red color objects. Similarly, motion-based tech-

iques may wrongly classify a scene with mountains containing

moke, cloud, or fog. These compositions make the dataset more

hallenging, enabling us to stress our framework and investigate

ts performance in various situations of the real environment. The

etailed information about this dataset and a set of images from

t are shown in Table 1 and Fig. 6 . The results achieved based on
his dataset and its comparison with state-of-the-art fire detection

ethods are shown in Table 2 . 

Fig. 6 shows sample images from selected videos of the first

ataset of 31 videos. Fig. 6 (i)–6 (vi) represent the frames containing

re, while Fig. 6 (vi)–6 (xii) show images containing no fire. It can

e noted from the given images that the dataset contains frames

elonging to both indoor (Fire13) and outdoor (Fire1, Fire2 etc.)

nvironments. The images also illustrate that some videos contain

 large amount of fire, such as Fire3, and some have very little

re, such as Fire13 and Fire14. Another challenge introduced in the

ataset is the distance of the fire from the camera. For instance,

ire2 video contains a very small fire at a larger distance. On the

ther hand, Fire13 video indicates a small fire but at a compar-

tively small distance. Besides this, there are red-colored objects

nd grounds such as a signboard (Fire14) and reddish grass (Fire6)

n many videos, making the dataset very challenging for fire detec-

ion methods. 

The proposed work is compared with other related methods in

able 2 . The existing methods for comparison are selected carefully
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Fig. 8. Illustration of the effect of noise on the performance of our fire detection scheme. Images (a, b, c, and e) are predicted as fire while images (d and f) are predicted 

as normal. 
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considering the underlying dataset, year of publication, and fea-

tures used. For instance, the selected existing methods are based

on different f eatures such as shape, color, and motion [51] and

[50] with the range of publication of 2004–2015. From the results

given in Table 2 , the best method in terms of false positives is [50] ,

but its false negatives are greater than other methods except for

[6] . In addition, its accuracy is 90.32%, which is less than two exist-

ing methods [13] and [49] as well as the proposed work. The work

of [13] is good compared to other methods, but the false positives

are still 11.67% and there is still room for improvement in both ac-

curacy and false positives. The proposed work, inspired from deep

features, reported further improvement by increasing the accuracy

from 93.55% to 94.39% and reducing the false positives from 11.67%

to 9.07%. Although, our work also resulted in false negatives of

2.13%, it still maintained a better balance between accuracy, false

positives, and false negatives, making our method more suitable

for early fire detection, which is of paramount interest to disaster

management systems. 

The second dataset [46] is comparatively small but very chal-

lenging. The total number of images in this dataset is 226, out of

which 119 images contain fire while the remaining 107 are fire-

like images containing sunsets, fire-like lights, and sunlight coming
 i  
hrough windows etc. A set of selected images from this dataset

re shown in Fig. 7 . For better evaluation of the performance, the

esults for this dataset are collected using another set of metrics

ncluding precision [52] , recall, and F-measure [53] . The results

chieved by our method using this dataset are reported and com-

ared with existing methods in Table 3 . By using deep features and

ne tuning our fire detection model, we successfully outperformed

he state-of-the-art methods by achieving the highest score of pre-

ision 0.82, recall 0.98, and F-measure 0.89, validating the effec-

iveness of our early fire detection method. 

.3. Robustness evaluation 

In this section, we investigate the robustness of our fire de-

ection method using different tests such as noise attacks, crop-

ing, and rotations. Fig. 8 (a) shows a test image containing fire,

hich is predicted as fire by our method with accuracy of 100%.

n Fig. 8 (b), we blocked the major part of the fire and passed the

mage through our framework. The image is still predicted as fire

ith accuracy of 99.42%. In Fig 8 (c) and 8 (e), we attacked the im-

ge with noise, yet our method successfully predicted the result-

ng images as fire with accuracy around 99%. Finally, in Fig. 8 (d)
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Fig. 9. Illustration of fire detection using a challenging test image. The white circles show the modified regions of the input image for different tests. 
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nd 8 (f), we tested how accurately our method has modelled the

re. To this end, we blocked the fire part of the images and passed

hem through our framework. It can be seen that our technique

uccessfully predicted them as “normal” with accuracy 99.57% (d)

nd 89.42%, respectively. Considering the results of the various

ests, it is evident that our method can detect fire at early stages

nder varying conditions in spite of noisy images, which can occur

n the real world during surveillance. 

In Figs. 9 and 10 , we investigated the performance of our

ethod against other tests using a normal test image in which

ome parts look like fire, making it challenging for fire detection

ethods. Fig. 9 (a) is the input normal test image while Fig. 9 (b)

s its flipped version. Both of them are predicted as normal by

ur method with accuracy of 69.16% and 61.35%, respectively. In

ig. 9 (c), a fire-like portion of the image has been blocked, show-

ng an increase in accuracy from 69.16% to 72.19%. In Fig. 9 (d–f), a
mall portion of real fire is placed on different regions of the nor-

al image and is passed through our model. It can be seen that

ur method has predicted them as fire despite the small size of

he fire, showing the effectiveness of this fire detection method at

arly stages. Fig. 10 illustrates the effects on the performance of

ur approach against different rotations. Fig. 10 (a) is the input nor-

al image while Fig. 10 (b) is the rotated image at 180%. Fig. 10 (c)

s the rotated version of Fig. 10 (a) where the rotation is 90 °. In

ig. 10 (d), a small amount of real fire is placed on Fig. 10 (b) and

s tested with our method. It is evident from all cases that our

ethod can successfully differentiate between fire and normal im-

ges and can detect fire at early stages, which is helpful to disaster

anagement systems. 

Apart from the above mentioned evaluation from different as-

ects, it is important to discuss the computational complexity of

 fire detection algorithm. Our proposed algorithm can process
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Fig. 10. Performance evaluation of our method against different rotations. The regions enclosed in white circles represent the modified parts of images for different tests. 
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17 frames/s using the specification mentioned in Section 4.1 , which

is sufficient to detect fire at early stages using cameras working on

25–30 frames/s. 

5. Conclusions 

Due to recent advances, CCTV cameras are able to perform dif-

ferent types of processing such as object and motion detection and

tracking. Considering these processing capabilities, it is possible to

detect fire at its early stage during surveillance, which can be help-

ful to disaster management systems, avoiding huge ecological and

economic losses, as well as saving a large number of human lives.

With this motivation, we proposed an early fire detection method

based on fine-tuned CNNs during CCTV surveillance. Incorporat-

ing deep features in our framework, we showed that fire can be

detected at early stages with higher accuracy in varying indoor

and outdoor environments while minimizing the false fire alarms.

Another desirable aspect of disaster management is autonomous

response and reliable communication, for which we proposed a

prioritization mechanism that can adaptively change the priority

of camera nodes based on the importance of the contents it per-

ceives. The reliability of the important frames and early response

to the disaster management system is ensured by a dynamic chan-

nel selection scheme using cognitive radio networks. Through ex-

periments on videos containing fire-like moving objects and real

fire in indoor and outdoor environments, we confirmed that our

framework can detect fire at early stages with good accuracy and

minimum false fire alarms, as well as ensuring an autonomous

response and reliable transmission of representative contents un-

der surveillance, which can greatly facilitate disaster management

systems. 
The proposed system improved the fire detection accuracy, with

inimum false alarms, but the model size is comparatively heavy,

.e., 238 MB. In future work, we plan to explore light-weight CNNs

or reducing the model size while keeping a balance between ac-

uracy and false alarms. Besides this, the proposed framework dis-

eminates the important frames with no authentication mecha-

ism at the disaster management system. In this context, data

iding approaches such as steganography [56,57] and watermark-

ng [58] can be used for embedding some information inside

eyframes for authentication purposes, as reported in recent works

or social networks [59,60] . 
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