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A B S T R A C T

With the prevalent use of mobile cameras to capture images, the demands for efficient and effective methods for
indexing and retrieval of personal image collections on mobile devices have also risen. In this paper, we propose
to represent images with hash codes, which is a compressed representation of deep convolutional features using
deep auto-encoder on the cloud. To ensure user's privacy, the image is first encrypted using a light-weight
encryption algorithm on mobile device prior to offloading it to the cloud for features extraction. This approach
eliminates the computationally expensive process of features extraction on resource constrained devices. A pre-
trained convolutional neural network (CNN) is used to extract features which are then transformed to compact
binary codes using a deep auto-encoder. The hash codes are then sent back to the mobile device where they are
stored in a hash table along with image location. Approximate nearest neighbor (ANN) search approach is
utilized to efficiently retrieve the desired images without exhaustive searching of the entire image collection.
The proposed method is evaluated against three different publicly available image datasets namely Corel-10K,
GHIM-10K, and Product image dataset. Experimental results demonstrate that features representation using CNN
and auto-encoder shows much better results than several state-of-the-art hashing schemes for image retrieval on
mobile devices.

1. Introduction

With the proliferation of smartphones, tablet PCs, and smart wear-
able devices huge amount of multimedia data such as images, videos,
and voice are generated and distributed every day. “How to manage
such massive data on a resource-constrained device”, is a serious issue.
One natural solution to handle such problem might be adapting cloud
based services due to its tremendous advantages, such as on-demand
self-service, ubiquitous network access, location independent resource
pooling, rapid resource elasticity, usage-based pricing and transference
of risk [1]. According to a report, Facebook is the largest growing image
storage and sharing cloud service today [2]. Additionally, the efficient
retrieval of image related information in enormous image datasets is
another challenging issue [3,4]. There are numerous cloud based image
service providers such as Amazon Cloud Drive, Flicker, iCloud by
Apple, and Google that support efficient indexing and retrieval of
multimedia data.

Despite the fact that cloud computing seems natural solution to
manage large scale image repositories, new challenges regarding data
control and privacies have also arisen. Cloud based photo management

systems are still struggling to handle the issue of efficient searching
with user's privacy. For example Facebook was criticized by huge
community when they introduced an auto image recognition service in
the year 2011 through which faces and objects in any photo can be
easily recognized and searched [5,6]. Anyone could easily stalk and
track anyone else using various image search engines such as Google
and Yahoo image search engines. After the prolonged controversy of
one year, Facebook agreed to remove the automatic face recognition
mechanism from their system. But this functionality has included once
again due to the requirement of efficient image searching and retrieval
despite significant disapproval of community. Google removed face
recognition functionality from Google Glasses to handle similar privacy
issues. The primary reason of rejecting automatic face recognition
services by vast community is that they can be stalked and illegally
searched by malicious hackers from anywhere, especially if the search
is performed by the system automatically. However this feature could
cause the system to generate image searching results more intelligently
such as retrieving a list of images being captured with a specific friend.
By modifying only the access control mechanism from public to private
does not guarantee that the uploaded image is totally safe on a cloud
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platform. Furthermore, disabling the automatic object recognition or
encrypting sensitive contents of the image are not even the proper so-
lution, because it also decreases the efficiency of image searching
functionality.

Although user prefers systems offering both functionalities i.e., ef-
ficient and privacy preserved image retrieval. The challenging task is
outsourcing the content-based image search on cloud platform without
letting the cloud anything know about the image contents during the
processing phase. Usually, similarity between two images is computed
by measuring the distance between the feature vectors. Such process
involves both addition and multiplication operations. One ideal solu-
tion for handling such issue might be using fully homomorphic en-
cryption techniques such as [7], but such approach is not easily adop-
table due to its larger computational complexity. Another approach
might be secure multi-party computation which supports privacy-pre-
served vector similarity between two images [8,9]. However, this
process requires both parties i.e., image owner and user to interact
constantly, which is not always possible for the image owner.

Recently, hashed based searching schemes have attracted significant
attention due to the growing demands of efficient access in large data
repositories [10]. Hash-based search schemes aim at efficient access to
the relevant data points in large scale datasets using approximate
nearest neighbor (ANN) search methods. They follow the mechanism of
locality sensitivity hashing functions which perform dimensionality
transformation from high to low dimension to preserve the original
neighbors in the hamming space [11]. These compact codes are used to
directly access the nearest neighbors of the query image without per-
forming linear search. Numerous hashing schemes have been presented
in the recent past which transform high dimension feature vectors of
image to low dimension compact binary hash codes. These hashing
methods include locality sensitivity hashing (LSH) [12], principle
component analysis hashing (PCAH) [13], spectral hashing (SH) [14],
spherical hashing (SpH) [15] and density sensitivity hashing (DSH)
[16] etc. Apart from these approaches, several other techniques have
been presented for transforming deep features to binary codes including
[17,18] where the high dimensional features are directly transformed
to binary codes using fast Fourier transform.

The aforementioned methods exploited various approaches for ef-
ficient and privacy preserved image retrieval. However, none of these
methods produce a win-win situation that is both computationally less
expensive as well as less prone to security issues. Some existing ap-
proaches such as [7,19] provide high-level encryption algorithms but
require huge processing units, which makes them less suitable for real-
time applications. Other techniques were computationally efficient but
lack acceptable privacy, decreasing its applicability in various areas of
interest [20]. Considering all these concerns, there is a need to come up
with a method, maintaining a balance between privacy and its flex-
ibility with limited resources.

In this article, we propose an efficient image retrieval approach for
mobile devices that ensures the privacy of the user's data using an en-
cryption algorithm, which is computationally less complex and easily
adaptable by mobile phones. In addition, our method shifts the com-
putationally heavy process to the cloud that can efficiently perform
features extraction and hash codes generation using VGG network and
deep Autoencoder. The generated hash codes allow the mobile device
to retrieve the identical images by processing only N number of bits
locally. Therefore, our method successfully improves the retrieval per-
formance on smartphone devices, while avoiding the excessive use of
device's resources to perform heavy computations. The main contribu-
tions of this work are summarized as follows:

1. We propose a privacy preserving image retrieval framework for
mobile devices. Our framework ensures the privacy of user's data by
encrypting images using an energy-friendly encryption algorithm.
The encryption algorithm is optimized considering both the limited
resources of smart phones and security of user's data, providing a

better balance between them. This unique characteristic makes our
framework more suitable for smart phones.

2. Avoiding the time-consuming efforts of the features engineering, we
use a pre-trained CNN model i.e., VGG-16 which automatically
learns rich features from the user's data.

3. Learned features are compressed to pre-defined length of hash codes
using deep Autoencoder, making this process of image retrieval
highly efficient. Further, the computationally expensive process of
features extraction and hash codes generation is offloaded to the
cloud, saving the resources of smart phones.

The rest of the paper is organized as follows: Section 2 explains the
relevant literature in the field of image retrieval. Section 3 covers the
technical detail of the proposed approach. Section 4 discusses the ex-
perimental results. The paper is concluded with future research direc-
tions in Section 5.

2. Related work

Searchable encryption techniques enable the user to search for
specific information in an encrypted data collection. Majority of the
existing searchable encryption techniques are utilized for textual in-
formation extraction. The basic cryptographic schemes in earlier stages
were used to search for the query term in the encrypted text document
with additional struggle not to let the server to learn anything from
outsourced data [21,22]. Thereafter, a large number of methods in
various thread models were proposed in the literature, such as multi-
keyword ranked search [23–27], similarity search [28,29], and dy-
namic search [30,31] to attain various search functionalities. However,
many of these schemes are reliable and easily adoptable for secure
image retrieval task. Shashank et al. [32] proposed private content-
based image retrieval scheme where the query image is protected be-
fore shifting it to cloud, while the image database remains unencrypted
on the server. Other researchers such as [33,34] outsourced the com-
putationally expensive task of features extraction to the cloud sever in
privacy-preserving manner. Running cloud based query in a privacy-
preserved manner is the key technique in CBIR outsourcing. Further-
more, homomorphic based techniques require high computation re-
sources which make it impractical to adopt for smartphone devices. The
first privacy-preserving CBIR scheme over encrypted image was pro-
posed by Lu et al. [35] where images are represented by its visual
features stored on the cloud server. Furthermore, Jaccard similarity
between the visual features of the query image and features database is
calculated to perform similarity matching between the two corre-
sponding images. Feature vectors of the image are kept secure by em-
ploying order-preserving encryption and min-hash algorithm. In an-
other work, Lu et al. [36] explored three features protection schemes
and compared it in terms of its security, retrieval performance and
computational complexity. The authors showed that Hamming distance
can be easily calculated for those feature vectors encrypted with bit-
plane randomization, and randomized unary encoding. However fea-
tures encrypted with random projection scheme can be utilized for
calculating L1 distance in encryption domain. Cheng et al. [37] de-
signed a secure CBIR system by utilizing bitplane randomization, and
randomized unary encoding same as discussed in [36]. Ferreira et al.
[19] introduced a new cryptographic scheme, called “IES-CBIR” which
is particularly designed for privacy-preserving image indexing and re-
trieval in large image repositories. In their work they extracted texture
from color component and encrypted each component using different
encryption schemes. Texture component was encrypted using prob-
abilistic cryptosystem while the color component was encrypted using
deterministic cryptosystem to perform CBIR using color property.
Cheng et al. [38] proposed an image retrieval scheme for stream cypher
based encrypted image. According to this technique Markov features
are extracted from encrypted image and is classified using support
vector machine [39,40].
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Large scale image datasets demand efficient indexing and retrieval
of relevant images to the query image. Recently, ANN based searching
schemes such as locality sensitivity hashing have shown very en-
couraging results. Images are typically represented as high dimensional
features vectors where the Euclidean distance between the feature
vectors corresponds to image similarity. The main goal of hashing
schemes is to generate a low-dimensional embedding in hamming space
while preserving the neighborhood. Hash based image retrieval in-
volves efficiently accessing the nearest neighbors of the query image by
calculating hamming distance. Numerous hashing schemes have been
presented in literature such as PCAH [41] which uses principle direc-
tion of data to convert features vectors to binary codes. LSH [11] uses
randomized algorithm to generate hash codes from the features vector
using a random threshold. Theoretically, the hamming distance be-
tween LSH codes seems highly correlated to the Euclidean distance
between features vector however, in reality this process yields to a very
inefficient codes. Spectral hashing (SH) [14] choose binary codewords
on the basis of minimum distance between same data points, where
similarity is defined by an approximate proximity matrix. SH performs
better than LSH, however, its optimization and generalization for new
data points is difficult. SpH [15] addresses generalization problem by
utilizing Eigen functions of weighted Laplace-Beltrami operations
which efficiently generate hash codes than SH. However, this process
requires very large memory for optimization. Similarly, other hashing
schemes such as Kernelied LSH (KLSH) [42], PCA with random rotation
(PCA-PR) [43] and iterative Quantization (ITQ) [44], Circulant binary
embedding with optimization (CBE-opt) [45] and compact quantization
(CQ) [46] have also been proposed in recent years.

3. Proposed framework

In this section we present an efficient image retrieval scheme on
smartphone devices that performs reasonable amount of computation
on local CPU while providing high rank image searching accuracy in
large-scale datasets. The proposed method consists of light-weight
image encryption algorithm that allows user's privacy while offloading
query image to the cloud. Hash codes are generated on cloud using VGG
network followed by Autoencoder that allows the process of mobile
image searching efficient for large-scale datasets. Details about image
encryption, features extraction, hash codes generation, indexing and
retrieval processes are provided in the subsequent sections.

3.1. Image encryption

For encryption, we use an image encryption method which is both
computationally efficient and resilient against various attacks. Our
image encryption scheme consists of two main steps: secret keys gen-
eration and encryption. The details of these steps are provided in the
sub-sequent sections.

3.1.1. Secret keys generation
In this work, the initial key is hashed using SHA-256 hash function

to a fixed length for ensuring its maximum sensibility. Its output is
further used for producing the initial values of the chaotic system to
generate the required cryptographic keys. Previously, we used
Zaslavsky chaotic map to generate appropriate encryption keys for the
cipher algorithm [47,48] but in this work, we modify the chaotic map
to another more secure and less complicated map. The detailed steps for
initialization of secret keys are given in Algorithm 1.

In Algorithm 2, the steps for generating the encryption keys for our
method using the secret key and an initial [32,32] matrix are given.
This work uses the same matrix Kinas used in our previous work [48].
First, we set up the initial values (x0, y0, r) for the chaotic map using
Algorithm 1. Then, we generate the random sequences S1, S2, and S3
based on the 2D-logistic map as given in Algorithm 2. The confusion
and diffusion operations are manipulated with each block [32,32] and

therefore, our encryption approach can be applied to any digital with
size format of [N*32, M*32], where M and N are integer numbers. The
encrypted image has similar size to the decrypted image. An example of
sample images from the datasets along with their encrypted and de-
crypted versions are shown in Fig. 1.

3.1.2. Encryption process
In this procedure, the input image is converted to one matrix. Next,

some random bits are generated using true random number generator.
The generated bits sequence are added the input image pixels using
bitwise-XOR operation. It should be noted that the generated bits noise
should have the same image size. From Fig. 1, it is clear that adding
random bits is not affecting the visual presentation of the images after
its decryption. In our scheme, any modification to the initial values
completely changes the ciphered image. Therefore, the encrypted
image produced is completely different despite the same input and
secret keys. The main steps of the image encryption method are given in
Fig. 2.

3.2. Features extraction

There are two main phases involved in automatic classification:
feature extraction phase and classification phase. Generally, the feature
extractor is composed of hand-crafted transformation of the input
image with, main focus of making the classification phase more effi-
cient. To date, a variety of feature extraction methods are presented in
the literature which include Scale-Invariant Feature Transform (SIFT)
[6], Speeded-up Robust Feature (SURF) [49], Local Binary Pattern
(LBP) [50], Histogram of Oriented Gradient (HOG) [51] and Oriented
FAST and Rotated BRIEF (ORB) [52]. Support vector machine (SVM) is
one of the well-known classification algorithms used to solve many
computer vision problems. However, random forest, decision tree, and
multi-layer perceptron (MLP) can also be used for such purposes.
Generally, choosing strong features may lead to high accuracy result
during classification phase.

Extraction of hand-crafted features requires a human expert to de-
cide which features better matches for the solution of a problem in a
specific domain. To overcome this drawback, an automated tool is
needed to extract the features from the given data and suggest a solu-
tion using the extracted features for the specified problem.

Fig. 1. Sample test images from the dataset. (a), original images, (b), encrypted
images, and (c) decrypted images.
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Convolutional Neural Network (CNN) is one of the best solutions to
address such problems [53]. CNN has multiple convolutional layers;
each layer is followed by a ReLU and a pooling layer. At the end we
have fully connected layers followed by a Softmax layer. The archi-
tecture of a CNN is designed to have the ability of learning variety of
different features at each layer which is more abstract representation of
the image data. It can perform both operations i.e., features extraction
and classification.

3.3. CNN architecture

For features extraction, we used Visual Geometry Group (VGG) [54]
model as shown in Fig. 3. The main reason of using this model is the
higher accuracy due to increased architectural depth and large number
of learned parameters as compared to other similar models i.e., AlexNet
[55]. The input image to the VGG network is of fixed size i.e.,
224×224×3. The only preprocessing performed on the input image
is subtracting mean image, formed during the training phase of the
network. In VGG network, input image is passed through a stack of
various convolutional layers of different receptive fields. The primary
focus of VGG network is to investigate the effect of increased con-
volutional network depth over the accuracy. As the network goes

deeper and deeper, the number of learned filters increase. The stride
rate for convolutional layers and pooling layers remains the same
throughout the network which is 3×3 with stride 1 in convolutional
phase and 2× 2 with stride 2 in pooling phase. In the initial two
convolutional layers, 64 and 128 kernels are learned respectively. The
rest of the layers include 256, 512 and 512 kernels, respectively. To
preserve the features maps size similar as the input during the con-
volutional phase, border pixels are mirrored before each convolutional
operation. Convolutional layers are followed by three fully connected
layers. The first two FC layers consist of 4096 neurons while the final FC
layer compresses the features values to 1000 channels because of
ILSVRC classification problem.

It has been shown in the past that the CNNs trained on huge datasets
like ImageNet can serve as generic feature extractors. We used global
sum pooling of the last convolutional layer as features to represent
images. This layer consists of 1000 activation maps where each map
refers to one particular class of the ImageNet dataset. By taking the
individual sum of each map in this layer, we get 1000 values which are
quantized to obtain compact representations. Each value is quantized
using four bits which reduced the memory requirements without any
significant loss in retrieval accuracy.

Fig. 2. Main steps of the image encryption method.

Fig. 3. CNN architecture for features extraction followed by deep Autoencoder for N-bit hash codes generation.
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3.4. Autoencoder

The main architecture of Autoencoder is a feed forward neural
network with an input layer, an output layer and one or more hidden
layers between them. Fig. 4 depicts the architecture of deep Auto-
encoder. An Autoencoder framework usually includes the encoding and
decoding processes. Given input x is encoded by Autoencoder across
one or more hidden layers by employing several encoding processes,
which is decoded again to reconstruct an output ̂x . The main focus of
Autoencoder is to reduce the deviation of ̂x from the given features
value x. The summarized representation of deep Autoencoder is given
as follows:

= +ξ f M x CEncoding: ( )1 1 (1)

̂ = ′ + ′x f M ξ CDecoding : ( )1 1 (2)

Where ƒ is a nonlinear sigmoid activation function, M1∈ R p×q and
′M1∈

q×p are parameter matrices, C1∈ Rp×1 and ′C1∈ ℝq×1 are bias
vectors, and ξ ∈ ℝp×1 shows output of the hidden layer. For an input

features vector =x i{ } 1i
n

, the reconstruction cost can be computed using
squared error cost function i.e., ̂∑ −

=
x xi

n
i i1

2. The main goal of
Autoencoder is to learn weight matrices M1 and ′M1 , and bias vectors C1

and ′C1 by minimizing the reconstruction error as follows,

̂
′ ′

∑ −
=M C M C x xmin

, , , i
n

i
1 1 1 1 1 1

2
(3)

In the proposed method we used deep Autoencoder to compress the
4096 dimensions feature vector into binary codes of 512, 256 and 128
dimensions. For this purpose, we trained an Autoencoder with more
than one hidden layers. Number of neurons in the given hidden layers
were defined in a hierarchical order. For our problem the designed
Autoencoder was composed of five hidden layers. First layer contained
2048 neurons, followed by 1024, 512, 256, and 128 neurons, respec-
tively. These layers were trained using the feature vectors obtained
from VGG network. The proposed system was evaluated using three
different length hash codes of 512, 256 and 128 bits. To transform 512
dimension feature vector to hash codes, 0.5 threshold value was found
the optimum value, whereas for 256 and 128, 0.05 threshold value was
chosen. Further, the generated hash codes were used to perform image
retrieval. The process of database population, and image retrieval using
generated hash codes are described in the subsequent sections.

3.5. Image indexing

After capturing an image using smart phone's camera, the image is
forwarded to encryption module, where it is resized to
256× 256 pixels and is encrypted using a light-weight encryption al-
gorithm. The encrypted image is then offloaded to the cloud via in-
ternet connection. The uploaded image is decrypted on the cloud and is
then pass through VGG network. The network generates 4096 dimen-
sion features vector at FC7 layer which is further compressed to 512,
256 and 128 bits hash codes using Autoencoder as discussed in
Section 3.4. Generated hash codes are returned to the mobile device.
Once the hash code is received by mobile app, the local path of the
captured image and its corresponding hash code is stored to local da-
tabase. Since the proposed method has been evaluated using three
different length hash codes, this makes the total length of the hash table
to 2512, 2256 and 2128 .The entire process of image indexing using the
cloud and smart phone is depicted in Fig. 5.

Fig. 4. Deep Autoencoder.

Fig. 5. Image indexing using smart phone with hash generation using cloud.
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3.6. Image retrieval

In retrieval phase, the query image is first de-sampled to 256×256
and is then encrypted using the algorithm given in Section 3.1. The
encrypted image is then offloaded to the cloud where it is decrypted
and converted to various length hash codes using VGG network and
Autoencoder. The generated codes are returned to the device via in-
ternet. Once the hash code is received by the mobile app, hamming
distance is calculated between the returned codes and existing codes of
database. The top ranked images with minimum distance from the
gallery images are displayed to the user. In this way, the proposed
framework minimizes the overall computation complexity, network
traffic, saves bandwidth, preserves user's privacy, and improves the

retrieval performance. Fig. 6 shows the overall procedure of image
retrieval for smart phones.

4. Experiments and results

We performed several experiments using actual smart phone device
as an emulator i.e., SONY Xperia C3, having Android Lollipop 5.1.1
version installed on it. The processing components of the device include
Quad-core 1.2 GHz Cortex-A7 processing unit and 1 GB of RAM and 8
MP camera. For emulating cloud infrastructure, we used apache's fa-
mous distribution XAMPP to make our local desktop as server to user's
query. Experiments are conducted from two perspectives: image en-
cryption and retrieval.

4.1. Evaluation of our image encryption method

In this section, the image encryption approach is experimentally
tested using its execution time and performance comparison with other
methods. For real-time applications, the algorithm should ensure both
fast speed and security [56,57], which is one of the distinguishing
properties of our method. The execution time for a set of images for
encryption and decryption is given in Table 1. The comparative results
are shown in Table 2 from where the superior speed of our method can

Fig. 6. Image retrieval from smart phone's gallery.

Table 1
Execution time (sec) for encryption and decryption of sample images using our method.

Image number 1 2 3 4 5 6 7 8 9 10 Mean

Encryption 0.15 0.16 0.15 0.15 0.17 0.15 0.15 0.75 0.16 0.16 0.215
Decryption 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.77 0.15 0.16 0.215

Table 2
Comparison based on encryption speed (Kb/s).

Algorithm Encryption

Our method 1166
Zhou et al. [58] ≈390
Belazi et al. [59] ≈200
Yao et al. [60] ≈440
Hamza et al. [47,48]. ≈205

Table 3
Comparative results.

Size Image Key space Speed (ms) Correlation NPCR UACI

Our [256, 256,3] 1090 ≅150 0.0035 99.615 33.4658
[62] [1024,1024,1] 2624 2513 0.0129 99.6177 33.6694
[63] [256,256,1] 0.25× 1064 1320 0.0060 99.6200 33.5100
[64] [256,256,1] 1056 547 0.0722 >99 ≅33.43
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Fig. 7. Retrieval results using the proposed hashing scheme and original deep features for (a) Corel-10K (b) Product image and (c) GHIM-10K image datasets.

Fig. 8. Retrieval performance of the proposed method in comparison with the other state-of-the-art hash code schemes for Corel-10K image dataset.

Fig. 9. Retrieval performance of the proposed method in comparison with the other state-of-the-art hash code schemes for GHIM-10K image dataset.

Fig. 10. Retrieval performance of the proposed method in comparison with the other state-of-the-art hash code schemes for Product image dataset.
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be observed.
Further, we compared our method with state-of-the-art algorithms

using four metrics as shown in Table 3. The metrics are standard me-
trics for performance evaluation of image encryption methods. The
details of metrics can be found in [61]. The tabulated results indicate a
better balance of the proposed method among the competing metrics.

4.2. Datasets

A wide variety of datasets exist for evaluating retrieval performance
of CBIR systems. We tested our proposed method against three different
benchmark datasets i.e., Corel 10K, GHIM-10K, and product image
dataset. Corel-10K image dataset consists of hundred different classes
having a total of 10,000 different images. This dataset contains diverse

Fig. 11. Retrieval results of the proposed methods using 512-bit hash codes for GHIM-10K image dataset.

Fig. 12. Retrieval results of the proposed methods using 512-bit hash codes for Corel-10 image dataset.

Fig. 13. Retrieval results of the proposed methods using 512-bit hash codes for Product image dataset.
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contents such as mountains, buildings, animals, sunset, achieves,
horses, vegetables, trees, food, and flowers. Each class consists of
hundred 192×128 images. The second dataset is GHIM-10K image
dataset. This dataset is comprised of images collected from web as well
as camera captured images [65]. It contains 20 categories where each
category has 500 images of size 400×300 or 300×400 of JPEG
format. This dataset has 10,000 overall images covering heterogeneous
contents from natural environment such as sunset, flowers, mountains,
cars, buildings, tiger, and fish etc. Most of the images are zoomed into
size 400×300 or 300× 400 from its high resolution state. The product
image dataset contains 5000 images of various household items in-
cluding laptops, cameras, chairs, hats, and bicycles.

In our experiments, we chose 5 random queries from each class of

Corel-10K, GHIM-10K, and product dataset. Precision score is calcu-
lated for 10 recall levels for every input query. Same is the case for the
number of queries conducted from other datasets. Lastly, mean preci-
sion-recall is computed to report retrieval performance. A commonly
adopted method for evaluating image retrieval system is precision-re-
call pair. Precision is defined as the number of similar images retrieved
per query divided by the total number of images retrieved. Recall can
be calculated as the total number of images we want to retrieve, divided
by the total number of similar images in the dataset [65]. Recall defines
the robustness of the retrieval process. Precision and recall are calcu-
lated as follows:

=Precision
Number of accurate images retrieved

Total number of images retrieved (4)

=Recall
Number of relevant images retrieved

Total number of relevant image in specified dataset (5)

4.3. Retrieval performance with original feature values vs. hash codes

In this section the retrieval performance is compared using deep
features as well as with different length of binary codes generated by
the proposed method. Fig. 7 shows the comparison of the retrieval
performance of the proposed method using hash codes and original
deep features. It can be noticed that all three representation of deep
features provide good accuracies for initial recalls. Especially, retrieval
performance achieved by 512 bit codes have shown very similar results
to original deep features.

4.4. Retrieval performance on various length of hash codes

In this section, the retrieval performance of the proposed method is
compared with other state-of-the-art hash encoding schemes. These
schemes include LSH [11,66], SH [14], PCAH [41], DSH [16] and ITQ
[44]. Experiments conducted using random queries chosen from dataset
and the retrieval performance were evaluated using variable length
hash codes including 128, 256, and 512 bits. Results have been re-
ported in precision recall standard format. Fig. 8 represents the re-
trieval performance of the proposed method in comparison with other
hashing schemes for Corel-10K image dataset. The proposed method
performed better than various hashing schemes using 128 bits. How-
ever, the retrieval seems weaker for initial recalls as compared to ITQ
but gets improved for later recalls. For 256 and 512 bits hash codes, the
proposed method outperformed all other methods.

In GHIM-10K dataset, the proposed method significantly outperforms
overall hashing schemes using 256 and 512 bit codes as given in Fig. 9. At
128 bits it performs better than PCAH, SH, DSH and LSH. However, ITQ
performs better than our method for initial recalls but the accuracy of our
method improves as the recall goes higher. The proposed method also
outperformed all methods in product image dataset using 512 bit hash
codes as given in Fig. 10. However, due to the challenging nature of the
image dataset, its initial retrieval result for 256 and 512 bits seem weaker
than ITQ, which improved for later recalls.

It can be concluded that the proposed method performs well com-
pared to other methods using 512 and 256 bits hash codes.
Furthermore, the proposed method generates more significant results
than other competing methods as the size of the hash codes increases. It
is much simpler than the other competing methods while its results are
promising. The given results show that the proposed method can
transforms high dimensional feature vectors to compact binary hash
codes very efficiently and requires very low processing power at cloud.
It is recommended to use 256 or 512 bit hash codes for efficient in-
dexing and retrieval in large scale dataset. Furthermore, the higher
length hash codes can also be obtained from early hidden layer of deep
Autoencoder with same compactness and efficiency which may lead to
more improved performance.

Table 4
Processing time of the proposed method and deep features.

Method Processing time (ms)

Original features 215 ± 4.04
512 bits 0.340 ± 0.170
256 bits 0.330 ± 0.190
128 bits 0.193 ± 0.005

Table 5
Time required for features extraction on different platforms.

Platform Processing time (ms)

Cloud 49 ± 2.64
Smartphone 1268 ± 21.7

Algorithm 1
Initialization of secret keys.

Input: Sec

= ∑ ∑ = ∑ ∑= = = =x Sec/ Sec, y Sec/ Seci 1
16

i 1
32

i 17
32

i 1
32

if Sec(1)<32
r= 1.11+ abs(x-round(x,2)) + abs(y-round(y,2))

Elseif Sec(1 )>=32 And Sec (1)<64
r= 1.12+ abs(x-round(x,2)) + abs(y-round(y,2))

Elseif Sec(1)>=64 And Sec (1)< 96;
r= 1.13+ abs(x-round(x,2)) + abs(y-round(y,2))

Elseif Sec(1)>=96 And Sec(1)< 128
r= 1.14+ abs(x-round(x,2)) + abs(y-round(y,2))

Elseif Sec(1 )>=128 And Sec(1)<160
r= 1.15+ abs(x-round(x,2)) + abs(y-round(y,2))

Elseif Sec(1)>=160 And Sec(1)< 192
r= 16+abs(x-round(x,2)) + abs(y-round(y,2))

Elseif Sec(1)>=192
r=1.17+ abs(x-round(x,2))+ abs(y-round(y,2))
End

Output:x,y,r.

Algorithm 2
The pseudo keys.

Input: File source, and Kin

1: Sec←HF (Source)
2: [x,y,r]←Algorithm 1 (Sec)
3: Ve← Logisticmap2D(x,y,r)
4: S1← +Ve h(10: 9)
5: S2← × +Ve w e(10: 9)
6: S3← reshape (Ve (10:1024+9),32,32)
7: ¬ ←V Sort[ , ] (S1) ¬ ′ ←V Sort[ , ] (S2) ¬ ←R Sort S[ , ] ( 3)
8: = ∑ + ∑ + ∑α S S S1 2 3 mod256
9: IF α=0 then

= ∑ + ∑ + ∑α S S S1 2 3 mod255
End
10: K← α · Kin, ← −L K 1

Output: V, V′, R, α, L, K.
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4.5. Visual results

In this experiment, visual results of randomly chosen images from
different datasets and the retrieval performance of the proposed method
using 512-bit hash codes have been shown in Figs. 11–13. Each dataset
has queried for two random query images and the top 20 retrieved
images have been shown. Visual results reveal that the proposed
method is capable of retrieving highly similar images despite the huge
volume and challenging nature of the consisted images in the given
datasets i.e., Corel-10K, GHIM-10K and Product image dataset. In
Fig. 11 top two images represent the query image from GHIM-10K
dataset where the entire retrieved images belong to the same category.
Fig. 12 represents results of the proposed method for Corel-10K dataset
where the top ranked images for both queries belong to its right cate-
gory. In the second query, the last image is irrelevant, however it has
very high resemblance with the query image in terms of its visual ap-
pearance. Fig. 13 shows the retrieval performance on Product image
dataset where in both cases the most relevant images have been suc-
cessfully retrieved at top ranks. These results show encouraging per-
formance of the proposed method.

4.6. Efficiency analysis

In this section the computation time of the proposed method has
been evaluated using original deep features and binary hash codes.
Table 4 reveals that processing 4096 dimension features vector of the
FC layer took 215 ms which has been reduced significantly by the
proposed method. By processing hash codes, time reduces to only
0.340 ms, while the retrieval performance remains almost same as
processing original deep features. In Table 5, features extraction time
on different platforms has been shown where the features extraction
time on cloud is only 49 ms. However, this process took more than one
second on smartphone device to perform features extractions.

5. Conclusion and future work

Due to the excessive use of smart phones, the amount of captured
image data has increased significantly, needing efficient indexing and
retrieval methods. Additionally, data privacy is another main concern
that comes into user's mind while using cloud based services. Therefore,
in this paper, we propose an approach for fast image retrieval in a
variety of datasets on smart phone devices by compressing the visual
features of CNN model using deep Autoencoder. The proposed method
offloads the computationally extensive phase of the image retrieval
process to the cloud to smoothen the image retrieval process on smart
phones. Our method is evaluated on three benchmark datasets: Corel-
10K, GHIM-10K and Product image dataset and results indicate that
features representation using CNN reports better performance than
several hand-crafted and deep features for image retrieval using mobile
devices. Furthermore, our framework ensures the privacy of user's data
based on a computationally efficient encryption method, providing a
better balance between execution time and security level.

In future work, we plan to use probabilistic image encryption
schemes [61] to further improve the security. The retrieval perfor-
mance can be further improved by introducing more compact deep
features in the current framework. In addition, the current system can
be merged with authentication mechanisms [67–70] and can be ex-
tended to smart cities [71,72].
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