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HIGHLIGHTS

e Low-cost, low-powered Raspberry Pi cluster is build, using Apache Spark and Hadoop.
e Energy and bandwidth consumption is significantly reduced compare to Cloud solutions.
o Experimental evaluation of the fog network based on small low-powered devices.

ARTICLE INFO ABSTRACT

Fog computing is emerging an attractive paradigm for both academics and industry alike. Fog computing
holds potential for new breeds of services and user experience. However, Fog computing is still nascent
and requires strong groundwork to adopt as practically feasible, cost-effective, efficient and easily de-
ployable alternate to currently ubiquitous cloud. Fog computing promises to introduce cloud-like services
on local network while reducing the cost. In this paper, we present a novel resource efficient framework
for distributed video summarization over a multi-region fog computing paradigm. The nodes of the Fog
network is based on resource constrained device Raspberry Pi. Surveillance videos are distributed on
different nodes and a summary is generated over the Fog network, which is periodically pushed to the
cloud to reduce bandwidth consumption. Different realistic workload in the form of a surveillance videos
are used to evaluate the proposed system. Experimental results suggest that even by using an extremely
limited resource, single board computer, the proposed framework has very little overhead with good
scalability over off-the-shelf costly cloud solutions, validating its effectiveness for loT-assisted smart
cities.
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1. Introduction

Fog Computing is a recently introduced architecture and a
paradigm in which the computing capabilities of a traditional
cloud-based network is shifted from a centralized data centers
to local end-user devices and networks. Fog computing princi-
pally extends the cloud computing architecture to the edge of the
network which enables an innovative variety of silent services
and applications for end-users. Since the initiation of IoT based
applications, the number of devices connected to the internet has
jumped from millions to billions and it is more likely to grow in
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the near future. Traditional cloud based centralized system cannot
respond to all connected devices in real-time without degrading
user experience. To manage challenges, presented by IoT infras-
tructure, Fog computing is introduced, that promises to effectively
provide low latency, high mobility and wide spread of geographical
coverage with compensation of huge number of nodes. Fog com-
puting or sometimes also referred as Fogging is still nascent and
gaining popularity due to its potential in wide range of applications
including IoT based systems [ 15,25], real-time computing systems,
energy aware computing applications [9,18], latency sensitive ap-
plications [9] and mobile applications etc. [4].

Smart cities are not an abstract concept anymore, as more and
more tech giants like Alphabet is investing in first completely
connected smart city project [10,14]. Future smart city projects
are essentially based on the IoT infrastructure. As smart cities
promise to provide comfort and a higher level of satisfaction to
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the citizens, one of the major issue that it can resolve is the public
security [29,30]. Public security is a growing problem for cities
worldwide therefore, future cities area aimed to be equipped with
IoT based technology to provide facilities to police and emergency
services to fight crime and make cities safer [28]. Furthermore,
future cities must ensure all these services with limited resources
and lean more towards clean and renewable energy [6]. To enable
challenging IoT applications with resource-demanding heteroge-
neous application requirements, researchers assesses, extends and
improves state-of-the-art IoT communication technologies and
protocols that are suitable for resource constrained devices [19].
These activities include the design of resource allocation protocols,
improving resilience and robustness of communication with de-
creased energy consumption.

The underlying smart devices which make up the whole IoT ar-
chitecture are expected to be resource constrained. This constraint
not only applies to memory and processing capabilities, but the
low-power radio standards which could further constrain the net-
work interfaces. To enable reliable [oT applications using small, low
power, battery operated devices different design tradeoffs have
to be considered, both in hardware, communication and software
implementations. To cope with these diverging requirements, this
research provided a proof of concept design to enable security over
smart devices in smart cities using limited resources over IoT and
Fog infrastructure.

In this paper we propose a novel framework for distributed
summarization of surveillance videos over the Fog network. The
network itself is composed of multiple regions combined as clus-
ters of Raspberry Pi. The video stream collected by surveillance
cameras connected to the Raspberry Pi is summarized by the
cluster itself without the use of any centralized server. Only the
summarized content of the video is periodically sent to the cloud
for long-term storage. The proposed method not only is cost ef-
fective, but also serves as a proof of concept for scalable, resilient
and robust distributed Fog network that can render streams of
videos in parallel. In summary, the contributions of this work are as
follows:

e We propose a novel fully distributed multi-region Fog com-
puting enabled framework for surveillance videos summa-
rization without having to use a centralized cloud server. To
the best of our knowledge, no such solutions exists yet.

e The fog computing platform is built on low-cost, low-
powered Raspberry Pi clusters, orchestrated with Apache
Spark and Hadoop for distributed storage and speedy sum-
marization of surveillance video streams.

e The proposed framework not only replaces the need for any
centralized server, but it also significantly reduced the band-
width consumption of a centralized and costly cloud-based
solutions.

e We designed and conducted series of experiments with real
workload to evaluate the performance of the Fog network
based on these small low-powered devices.

The rest of the paper is organized as follows: In Section 2 we discuss
the recent advancements in fog-based solutions and Internet of
Things (IoT) in general. We also discuss some related literature for
video summarization and Raspberry Pi. In Section 3 we discuss the
proposed framework and methodology along with layout of the
proposed method in detail. Section 4 presents the experimental
results and performance evaluation of the proposed framework
based on real workload. Section 5 concludes the paper with some
insight and future directions.

2. Related work

Fog computing is intended to bring cloud-based computation
to the local network thereby reducing the computation cost and
bandwidth of the network. Fog computing technology and re-
lated formal architectures are rare and this technology has not
been widely accepted as standard for IoT based applications yet.
But observing the trends in IoT based applications, we can safely
predict that usability and applicability of the Fog paradigm in
the near future for all types of applications. Typical [oT based
applications connect to a single cloud which responds in real-time
to all connected devices which can cause delay especially when
the number of applications is in billions. In order to avoid such
delays, the computation and storage capabilities of the traditional
cloud-based system is brought down to the local network to exploit
devices present on the edge of the network. This paper proposes
a computation model to efficiently manage cloud resources for
surveillance tasks allocation. Hossain et al. [ 16] proposed a model
to optimizing the trade-off between average service waiting time
and long-term service cost. The authors show that long-term ser-
vice cost is inversely proportional to high and balanced utilization
of cloud resources. A series of experiments show that the proposed
approach proved to be very efficient for cloud resource manage-
ment when handling the heterogeneous video surveillance tasks
dynamically. L. Wan et al. proposed an architecture to simulate
a battlefield surveillance system with mobile cloud computing
cognitive wireless network and a 5g link to estimate the trajectory
and estimation of missiles in the battlefield only by using mobile
sensors [38]. Jaime Lloret et al. [21] proposed a system that uses
alternate channels of transmission to stream surveillance videos
in rural environments. The proposed solution promises scalability,
compression and practicability in real-world situations without
compromising the quality. Cloud based application uses virtu-
alization which inherently create delays in real-time streaming
applications over a mobile network that affects Quality of Service
(Qos) in cloud mobile applications. Garcia-Pineda et al. [12] pro-
posed evaluation matrices for assessing quality of video streams
in mobile cloud based applications. Taha et al. [34] proposed a
technique for efficient handoff in 5G networks for better QoS to
ensure better fog connectivity for IoT based applications.

With the advent of small, portable, low power, low cost, mini
computers we can create a local Fog-based system to respond in
real-time to the connected devices. Popularity of the fog-network
is not only limited to large scale networks, but is also useful in
smaller networks, in this regard, [17] proposed Fog-computing
based vehicular network to create a fog-enabled communication
between vehicles. Secinti et al. [32] proposed a similar architec-
ture that enables software defined networks to communicate in
VANETs using Raspberry Pi as a computation platform. Benson
et al. [3] proposed and developed SCALE: Safe community aware-
ness and alerting system, which leverages the IoT architecture for
its computation and scalability. The authors conclusively proved
that the low powered, Raspberry Pi can be used as a computa-
tion platform for all home automation systems and with mini-
mum effort without adding any extra cost. Not only is it useful in
hardware based system, but this low cost devices is being used
by [13] as portable switch for software-defined networks in a
large scale network. Similarly [35] presented a testbed to simulate
large scale wireless sensors network for research purposes. The
authors argued that the proposed systems consume less power
and has the ability to provide a resourceful testbed for cloud-based
applications on software-defined networks.

All ToT based applications must use some protocol to enable
communication between heterogeneous devices. One of the most
common protocol is the Message Queuing Telemetry Transport
(MQTT) protocol. MQTT is used as signaling platform between all
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devices connected in an IoT based application. Raspberry Pi is being
used as a cheap yet efficient solution for IoT based applications.
Raspberry Pi has quickly become one of the best-selling computers
that stimulated various interesting projects across both industry
and academia. This single board computer is so popular among
hobbyist and academia alike that in the past five years the Rasp-
berry Pi foundation has sold more than 14 million units of this de-
vice [37].In order to prove that even such a small and low powered
device can perform intense tasks such as video summarization, we
combine them in the form of a cluster. For this purpose, several
Raspberry Pi devices are combined (5 in each region) to from an
Apache Spark and Hadoop cluster. There are several Raspberry Pi
based clusters being built by the research community to perform
intense computation tasks. The first Raspberry Pi based cluster was
built by Iridis-pi [7] and Glasgow Raspberry Pi Cloud [36]. The
hardware construction of the nature of these projects is similar to
the proposed work but there is a distinctive difference in the ap-
plications. In fact, there is no related literature on the topic where
computer vision application has been evaluated on the Raspberry
Pi based cluster. Iridis-pi was developed to educate students in
understanding the data handling in high performance computing
platforms. The Glasgow Pi Cloud project is mainly focused on vir-
tualization technologies related to cloud computing. In spite of the
popularity of these small low powered computers, there has been
very limited study on performance of the systems on Fog comput-
ing paradigm. Morabito et al. [23] run a series of experiments to
test applications related to single node of Raspberry Pi, but these
applications are only related to container-based technologies. The
purposed work was to evaluate the Memory, Input/Output, Disk In-
put/Output, CPU and Network I/0. They concluded that the virtual-
ization impact on the performance is negligible in comparison with
non-virtualized, native execution environment. The authors of [31]
proposed a cluster of seven nodes with focus on applications in big-
data analysis. The proposed framework was designed in Hadoop
and Apache and had more realistic applications on performance of
the cluster. Mitchell et al. [22] created a cluster of 68 Raspberry Pi
for students to evaluate the challenges in cluster based system. This
cluster had one master node and 64 worker nodes, while one node
was a monitor node and two nodes were set as storage units. The
focus of the activity was to develop applications for the cluster and
to provide benchmarking for the research community. Bellavista
et al. [2] presented a technique for Fog enabled IoT applications
to use Raspberry Pi as gateways for a large scale network. The
authors claim that by using even this resource constraint device,
the docker-based containerization of applications is feasible and
can achieve high scalability.

As discussed in Section 1, one of the most important goal of
smart cities is to provide automated and enhanced security with
minimum overhead. Any secure city needs to be equipped with
thousands if not millions of smart surveillance cameras. With the
development of the digital video processing technology, video
surveillance is playing an important role for smart security. Due
to the high volume of videos, manually retrieving meaningful
information from these videos is very time-consuming and im-
practical. It is necessary and important to allow the smart cameras
to automatically extract the parts of interest from these surveil-
lance videos. Key frame extraction and video summarization are
common approaches for video summarization. The summarization
structure is learned by a machine learning algorithm which is
later on used to classify only portions of the video which can
serve as effective-representation of the original video. Detecting
interesting events in the surveillance videos is more common due
to the advancements in artificial intelligence and machine learning
techniques. In [26] the front and rear view of the pedestrian is
detected using a novel wavelet coefficient technique. This tech-
nique was among the first to apply object detection in surveillance

videos. The authors of [20] presented a summarization technique
based on hierarchical clustering. In this technique the shots having
similar features which are closely related in the time domain are
combined. The authors make use of MPEG-7 visual descriptor to
choose indices and to generate summary. The resulting summary
contains the key-frames and preview of the original video which
can be accessed in a non-linear fashion. Rasheed et al. [27] present
a summarization scheme based on shot-similarity graph. Wang
etal. [39] suggest that by analyzing object motion in video streams
and by calculating the overall motion of the camera nodes, useful
information can be extracted which represents the structure of the
video. The approach can be used to create partial summaries of the
original video. In [24] the authors presented a robust video sum-
marization scheme that also make use of encryption techniques
to securely transfer image data in IoT based systems. The authors
use a novel technique to encrypt video frames and yet the memory
consumption is low, which makes it more suitable for small, low-
powered and resource constraint devices.

We propose a novel framework for a computer vision applica-
tion based on realistic video footage captured by the Raspberry
Pi camera. In addition, we study the performance of the cluster
in terms of computation cost as well as the resources consumed
during the process, which gives a dynamic insight in the scalability
of the fog computing-based network.

3. Our proposed methodology

As discussed in the previous section, we propose a novel frame-
work based on Fog computing architecture for video summariza-
tion based on low powered computers. The overall layout of the
network is presented in Fig. 1.

The surveillance camera network is divided into multiple re-
gions connected to a centralized router. Each region is composed
of multiple surveillance cameras connected via a wired ethernet
cable. The camera itself serves both as network node as well as
a surveillance camera because, Raspberry Pi can perform compu-
tation and can also captures videos, thereby enabling embedded
vision. The centralized router is connected to the internet gateway
which is capable of sending summarized videos to cloud based on
MQTT publishing. Each region of the Fog network has a master node
that servers as a server, whereas the rest of the nodes serve as slaves
for the cluster. A job is divided and controlled by the master node
within the region itself and it is also responsible for communication
with the MQTT server for responses and cloud offloading. Master
node of one region can also communicate with the master of the
other region and also with the cloud via the centralized router.

In Fig. 2, the client and master nodes communicate with one
another to initiate the summarization process of the surveillance
videos. MQTT protocol is used to communicate with the broker and
initializing the summary process. The clients initiate the process by
subscribing to the topic of summarization using request with the
name of the topic. A session with a pre-defined life-time is set for
each client and then acknowledged accordingly. The clients sub-
scribe to the same topics receive directives from the master node
along with necessary data to initiate the process. The summarized
content is then shared with the broker which is periodically pushed
to the cloud, in this way the clients receive messages without being
told everytime. MQTT protocol is very simple to implement and
has very limited overhead with even extremely resource constraint
device i.e. Raspberry Pi.

The overall framework of the proposed method is presented
in Fig. 3. Camera mounted on Raspberry Pi captures the video
stream, which is then distributed to all nodes in the same region
and processed in parallel using Apache Spark and Hadoop based
cluster, the specification and details of this step are mentioned in
the next section. Once the video is summarized, the master node
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Fig. 2. Message flow between broker and client for initiating summarization process.

sends this short version of the video to the cloud using the internet
gateway. This technique not only summarizes the video stream
into more meaningful chunks but also saves significant bandwidth
that would have been wasted, if it was to send the whole stream to
the cloud.

The proposed framework is based on multiple regions of
surveillance cameras working together in the form of a cluster
to summarize surveillance videos in order to conserve energy,
reduce computational cost and also reduce the bandwidth. All
these regions in the Fog network is controlled via a master node
that servers as a server for all other nodes in the same region. These
master nodes communicate with each other via MQTT protocol.
MQTT stands for Message Queue Telemetry Transport and it is
a lightweight message queue protocol specifically designed for
low bandwidth networks where small data packets need to be
send across very high latency links. MQTT provide simplicity and
it serves as an accepted communication protocol for almost all
internet-of-things projects [1]. Working of the MQTT protocol is
presented in Fig. 4. MQTT works on even unreliable networks with

some degree of assurance that the messages have been delivered
successfully. In our case MQTT is used to pass messages between
master nodes of each region. In the first step, all the master nodes
subscribe to the topic init-summary and listens to this topic. In
the second step the MQTT message broker send confirmation
to each subscribing node that subscription has been successful
and they are now ready to receive messages related to the topic
subscribed earlier. In the third step the message broker publishes
the topic init-summary indicating that all master nodes may start
the summarization process. This step in our case is time-triggered
meaning that it is initiated only once per 12 h. Upon successful
completion of the summary process, the processed summary video
file is generated on master node and sent to the cloud periodically.

The summarization process is lightweight and is adapted from
[8] where the algorithm assume that the surveillance cameras are
still and the background is static i.e. not moving and pointed to
the fixed location and at a fixed viewing angle. The redundancy
between frames is quantized in the form of energy and is used
as a criterion for interesting event detection. The process of event
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detection is divided into three steps. In the first step the absolute
difference of two consecutive frames is calculated then, after find-
ing the differences, the values of each frame is quantized in the
form of energy, that is later on used for event detection. Energy of
each frame is calculated using Eq. (1).

Yo Yo x(ij) .
N.M
The energy of all frames is calculated and in step three, only
the frames that crosses a fixed threshold is selected as keypoints
which effectively represents the original video. The steps of the
algorithms are presented in Table 1.
The algorithm works by processing an input video &. The ab-

solute difference o of two consecutive frames are calculated and
stored in candidate list Cr. This list contains all the key-frames that

Energy(f) =

has some difference with the previous frames. Similarly, the whole
video is processed to extract interesting frames based on Eq. (1).
The energy ¢(f) of each frame is calculated and stored in candidate
list C;. The frame is considered as interesting only, if it crosses a
fixed threshold £y. The list ¥ is the ratio of both candidates’ lists and
event is considered as interesting only if the ratio crosses a fixed
threshold £y. These thresholds are selected after experimentation
and vary widely, depending on type and condition of the camera
calibration. In our case the threshold was fixed and no changes
were made to the default setting of the Raspberry Pi camera.
A simple clustering technique K-Nearest Neighbor is applied to
the list ¥ to obtain a summarized video content that effectively
represents the original video.
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Table 1
Algorithm for surveillance video summarization over the distributed Fog nodes.

Input: Surveillance video d.

for f:= 1 to len(d)
Qo = abs(ﬁ - f(i-l))
Cr appends (o)

for i:=0 to N-1
for j:=0 to M-1
o = abS(Xi - Xj)
g(f) = a/N*M
Cr =dxi,xit1) <y
Y =C/Cr>T
Output: ¥ containing list of interesting events representing the key-frames.

4. Experimental results

In this section we evaluate the performance of the proposed
framework by comparing the results of a single node with the
Spark based cluster. The system is tested on a single node of
Raspberry Pi 3 Model B which has a Broadcom BCM2837 system
on a chip which includes an ARM Cortex-A53, 1.2 GHz processor,
Video Core IV GPU, and an SD card slot along with 1GB RAM
and 100MBps ethernet connection. The GPU of the Raspberry Pi
is capable of video playback using H.264, which can play Blu-ray
quality videos at 40MBits/s. The cluster of each region is composed
of five nodes working as slave under one master node. Each of
the connected node is installed with Apache Spark and Hadoop’s
Distributed File System (HDFS) [5,33]. The reason that we chose
Spark is because of its popularity in big-data analytics and the fact
that its performance is very good on small embedded devices like
Raspberry Pi. On each node of every region of Fog network, we
installed the lite version [11] of the Raspbian operating system to
conserve more memory and processing power.

Apache Spark [40] is used as a general-purpose clustering sys-
tem which can be used to work as a traditional Extract, Transform,
and Load for feeding data to the warehouses, or it can be used
to perform interactive analysis for online pattern matching etc.,
There are three different ways in which Apache Spark can be used
for clustering: (1) Standalone Mode (i): in which Spark and HDFS
directly communicate with each other and optionally MapReduce
can submit jobs in the same cluster; (2) Hadoop Yarn (ii): In

this mode, the Spark executes over a Hadoop container manager
distributed across the cluster; (3) SIMR (iii) or Spark in MapRe-
duce, where Spark can execute its own jobs along with the one
submitted by MapReduce. Inour experiment we used Standalone
deployment of the Apache Spark in which both HDFS and Apache
Spark are the part of the cluster. All types of Spark deployment
are illustrated in Fig. 5. The working of a general-purpose Spark
cluster is usually in four steps; (1) the candidate data (video file in
our case) is distributed across all working nodes; (2) the mapper
functions process the data upon reception; (3) the aggregation of
comparable patterns is performed by shuffling process and lastly
(4) to produce a consolidated output the reducer combines all the
processed data and generate a summarized video file.

HDFS is Hadoop’s distributed file system designed to run on
ordinary hardware without the use of high end expensive hard-
ware. HDES is specifically designed for huge datasets processing.
HDFS works by replicating the data into smaller portions and
distributing and replicating it across multiple nodes. The reason
that the data is replicated is because it makes the system fault
tolerant in case of failure of nodes. Fig. 6 shows the working of a
typical Hadoop Distributed File System over a video file distributed
among different Raspberry Pi based nodes. Typically, the HDFS
based clusters are composed of server nodes called Slave Node3
namenode and multiple slave nodes called datanode. The master
node acts as a server and it manages the access of shared files
between different connected slaves. Besides this, the master nodes
handle distribution of data between slaves and consolidating the
output as well. Each block of file is divided and distributed across
the cluster, the default size of each block is 64 MB and each of
which is replicated across three nodes by default. We designed
experiments to evaluate the proposed framework on different sizes
of data and on single and multiple clusters. The file sizes are
categorized in different problem sizes given in Table 2. In a real-
world situation, the problem size may vary widely and the actual
results may too, but by dividing these problems into sub categories
can give us in depth performance evaluation.

In the first series of experiments we evaluate the Fog enabled
Spark-Hadoop cluster for CPU usage, cluster throughput and net-
work performance. Fig. 7 shows the complete evaluation of the
system. At the first glance we observe somewhat predictable re-
sults and identify identical patterns for clusters, as it tends to be
more robust and efficient then a single system. For small workloads
the performance of the cluster is very high as there are many
available cores compared to the only four available on a single
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Raspberry Pi. Fig. 7(a) shows that the req/s is 2700 for cluster
where it is at 100 for single Pi. For larger jobs the single system not
only significantly degrades but the temperature of the Raspberry
Pi significantly increases even with an installed air coolant. The
network throughput Fig. 7(b) for the same cluster is very high for
clusters as multiple video files are shared across the cluster for
parallel processing. Whereas in this case the single Raspberry Pi
does not have any overhead as it shares the data between its own

cores and only communicate with the namenode at a constant 17
kb/s.

The average temperature of the single system is very high even
for medium job sizes. All the nodes in the cluster are equipped with
a5 VDC fan connected to the GPIO pins of the Raspberry Pi. Fig. 7(c)
shows that even then it is approaching very high temperatures
and is pushing this small device to its limits. However, the average
temperature of the rest of the cluster remains relatively low even
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Fig. 9. Execution time of the summarization process on all available cores.

for larger jobs. It suggests that the cluster can be expanded without
having to worry about the health of each node in the cluster. The
average CPU utilization Fig. 7(d) of the cluster is significantly low
because of the job distribution among multiple systems. On the
contrary the CPU utilization of the single Pi is significantly high
even though the throughput is very low.

In order to further evaluate the performance of the system we
divide the video file to (i) Small 1 GB (ii) Medium 3 GB and (iii)
Large 6 GB file respectively. Fig. 8 shows the resources utilization
of the system in terms of memory and CPU usage. As evident
from these results, the memory utilization of the cluster is very
high even for small jobs. This is because the Hadoop and Apache
Spark based clusters are memory greedy and the RAM available in

(@

3500
‘ 10000

the Raspberry Pi is sparse. The high CPU and memory utilization
observed in the large jobs implies that there is constant swapping
in the memory and smaller jobs have to wait even if completed
earlier.

The number of available cores in Raspberry Pi 3 is four, and we
have combined 5 of them in one region of the Fog network. The
total number of available cores are 20 at a given time, thereby
limiting the computation to only 20 cores. Fig. 9 shows the total
execution time of each file on each available core. The execution
time is aggregated and presented in minutes. As we can observe
the large files take much more time even though if the number of
cores is fully available. On the contrary the smaller and medium
jobs require less time and is more efficient if all cores are available.

In addition to the previous analysis, the network transmission
of the fog network is depicted in Fig. 10. Smaller jobs reach the peak
value of 3.2 Mbps while medium and large jobs reached to 9 and
10 Mbps respectively. The network traffic is significantly high at
the end of each job because of the shuffling process, where every
node is sharing results with their neighbors to consolidate results
and generate a single summarized video file.

This architecture serves as a proof of concept design for future
cities and become valuable asset for all future law enforcement
services. The fact that small, low powered, single-board tiny com-
puters can be combined to become a valuable cluster is more
natural and can serve as a platform for many computer vision
applications. The currently available techniques which utilizes the
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embedded vision are either based on single-system, or had not
considered the powerful features that Fog computing offers.

5. Conclusion

In this paper we proposed a novel Fog computing enabled
distributed video summarization scheme for surveillance videos
based on small, low-powered, cheap, single board computer known
as Raspberry Pi. The Fog network is composed of multiple regions
of nodes, based on these single board computers. We conclusively
proved that this low power computer can not only replace a costly
cloud solution, but also holds potential for scalable for enabled
applications without adding any significant cost. In the future,
we will explore video summarization algorithms that are specif-
ically build for resource constraint devices. A thorough review
of different CNN based nano architectures and its application in
video summarization schemes as well as its applicability on single
board computer is also under consideration. Furthermore, we will
look into more robust Fog architectures that not only benefits the
scalability of the network but also provide robust response for
intense computer vision tasks such as deep learning models and
deep learning enabled activity recognition for surveillance videos.
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