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Abstract Malaria is a life-threatening disease caused by parasite of genus plasmodium, which
is transmitted through the bite of infected Anopheles. A rapid and accurate diagnosis of
malaria is demanded for proper treatment on time. Mostly, conventional microscopy
is followed for diagnosis of malaria in developing countries, where pathologist
visually inspects the stained slide under light microscope. However, conventional
microscopy has occasionally proved inefficient since it is time consuming and results
are difficult to reproduce. Alternate techniques for malaria diagnosis based on com-
puter vision were proposed by several researchers. The aim of this paper is to review,
analyze, categorize and address the recent developments in the area of computer aided diagnosis
of malaria parasite. Research efforts in quantification of malaria infection include normalization
of images, segmentation followed by features extraction and classification, which were
reviewed in detail in this paper. At the end, of review the existent challenges as well as possible
research perspectives were discussed.
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1 Introduction

The term “malaria” is derived from the Italian word mal’aria, meaning “bad air”. Malaria is a
serious public health problem in many parts of the world, causing millions of deaths every year
in more than 90 countries. According to World Health Organization (WHO) report about 3.2
billion humans (approximately half of the world’s population) are at risk of malaria, causing
about one million of people death every year [45]. According to the latest WHO estimates,
released in September 2015, there were 214 million cases of malaria in 2014 and 438,000
deaths [45]. Most malaria cases and deaths occur in sub-Saharan Africa. However, Asia, Latin
America, and, to a lesser extent the Middle East and parts of Europe, are also at risk [45, 84].
In Pakistan, 95 million people i.e., roughly 60% of the total population, live in malaria
endemic regions. Malaria in Pakistan is typically unstable and major transmission period is
post monsoon i.e. from August to November [34].

Malaria is caused by parasite (a small living organism) of genus plasmodium and trans-
mitted by infected female Anopheles mosquitoes which carry plasmodium sporozoites in their
salivary glands. When an infected mosquito bites a person, the plasmodium parasites enter the
blood and travel to the liver where it grows. After development in lever, parasite leaves liver
and travels back to blood stream and attack Red Blood cells (RBC) also called Erythrocytes
[52, 62]. Symptoms of malaria typically develop within 10 days to four weeks following the
infection. Common symptoms of malaria are high fever, shivering, headache, vomiting,
muscle pain and pain in joints [3, 44, 82]. There are more than 50 species of plasmodium,
only four of which cause human malaria are: plasmodium falciparum, plasmodium
vivax, plasmodium malariae and plasmodium ovale [3]. Plasmodium vivax is the most
common type of malaria and usually causes a slight and very rarely mortal form of
malaria. Similarly, plasmodium ovale causes a mild infection. Plasmodium malariae
causes a severe fever, but it is not usually life threatening. While, plasmodium
falciparum is considered as a most deadly species that kills millions of people every
year worldwide. The malaria parasite appears in four stages in human blood i.e. ring, trophzoite,
shizont and gametocyte [8]. Four species ofmalaria parasite alongwith their corresponding life-
stages are shown in Fig. 1 and morphological variation of different species and life stages of
malaria parasite are presented in Table 1.

Fig. 1 Sample views of four
different malaria parasite species
and their life-stages
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2 Scope of this review

Computer aided diagnosis of malaria parasite and recognition has opened a new area
for early malaria detection that showed potential to overcome the drawbacks of
manual strategies. The scope of this paper is to review and analyze the recent work
of different researchers in the area of malaria parasite recognition using computer
vision. This paper provides a good basis for researchers who are starting to investi-
gate the computer aided malaria diagnosis methods. In this paper, a review and
analysis of computer vision and image analysis studies which addresses the automated
diagnosis of malaria on blood smear images and its necessary supporting functions is
provided. Brief features of this paper are as under:

& Medical background of malaria disease is explained comprehensively.
& Morphological variations of different species and life stages of malaria parasite is

discussed.
& Microscopic diagnosis method for malaria is presented in detail.
& General architecture of automated diagnosis of malaria is presented.
& The contribution of different researchers is demonstrated and summarized in context of

general architecture of automated diagnosis of malaria.
& Different techniques used by various researchers in each step of automated diagnosis of

malaria are presented in tabular form.
& Performance comparison of different research works is presented.
& At the end of review, some major challengings and future directions are suggested.

3 Malaria diagnosis techniques

One would think that the symptoms of malaria, including chills, fever, and pain etc. would be a
good indication of the disease. However, there are a number of other diseases, such as severe
nephritis, that could cause the same symptoms. Thus dominant diagnosis techniques are
required that detect malarial plasmodium in patient accurately. WHO recommends that all
cases of suspected malaria must be confirmed using parasite-based diagnostic testing (either
microscopy or rapid diagnostic test) before administering treatment. Many techniques have
been developed for malaria diagnoses such as flow cytometry, fluorescent microscopy,
polymerase chain reaction (PCR) etc. However, microscopy is still considered as a golden
standard for laboratory confirmation of malaria [8].

3.1 Microscopic diagnosis of malaria

Detection of malaria parasites by light microscopy is still considered the primary method for
malaria diagnosis in health clinics and hospitals throughout the world. An accurate laboratory
diagnosis is essential as false negatives can result in untreated malaria patients, causing severe
consequences [53]. The WHO practical microscopy guide for malaria provides detailed
procedures for malaria diagnosis [6]. Using a microscope, visual discovery and identification
of the parasite is possible and efficient via a chemical process called staining. Giemsa is a
popular and cost effective stain that is generally used during staining process [81]. Giemsa
stain slightly colors RBCs but highlights the parasites, white blood cells (WBC), platelets, and

Multimed Tools Appl



various artifacts. In order to detect the infection the stained objects could be divided into two
groups i.e. parasite and non-parasite (Fig. 2).

Slides for microscopic diagnosis of malaria can be prepared in two different methods
namely thick and thin blood slides. Samples of thick and thin blood smear are shown in
Fig. 3. A thick blood smear is a drop of blood on a glass slide. It is most useful for detecting
the presence of parasites, because they examine a larger sample of blood. It is dried for 30 min
and mainly used to detect infection and to estimate parasitemia. Infected species of malaria
cannot be detected in this method. On contrary, thin blood smear is a drop of blood that is
spread across a large area of the slide which is dried for 10 min and fixed in methanol. This can
be done by either dipping the thin smear into methanol for 5 s or by dabbing thin smear with a
methanol-soaked cotton ball. While fixing the thin smear, all care should be taken to avoid
exposure of thick smear to methanol. Thin blood smears help doctors discover what species of
malaria are causing the infection [81]. The variation between thick and thin blood smear for
malaria infection evaluation is discussed in Table 2.

Advantages of microscopy are possibility of distinguishing species of Plasmodium, quan-
tifying parasitemia, observing asexual stages of parasites as well as having low material cost.
Besides numerous advantages of microscopic diagnosis of malaria, there are some weaknesses.
It heavily depends on the skills and expertise of pathologist/Technician. It was observed in
several studies that manual microscopy is not a reliable screening method when performed by
a non-expert [7]. Additionally, confirming negative status of malaria slide take considerable
time and efforts. Furthermore, it is difficult to observe each blood smear with full concentration
where a pathologist has to conduct many tests. Therefore, an automated image analysis system
would improve the performance of microscopy by avoiding its main limitations in term of
dependency on the ability of laboratory technician to diagnose blood images accurately.

3.2 Computer aided diagnosis of malaria

Computers play a vital role in the medical field and without it, proficiency and productivity
would decline markedly. Computers are already playing a major role in variety of medical
diagnosis applications such as digital X-ray, magnetic resonance imaging (MRI), computed
tomography (CT Scan), Ultrasound and many others. Computerized diagnosis of malaria is a
microscopy diagnosis technique by the use of computer vision and machine learning methods.
It can be used as an aid or a complete automated diagnosis technique, which replaces the
manual microscopy examination. Tek et al. [77] presented review papers which address the

Fig. 2 Stained object classes:
Parasite and Non-Parasite
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automated diagnosis of malaria based on computer vision using microscopic slide images. An
automated malarial diagnosis system can be designed by understanding the diagnostic exper-
tise (hematologist knowledge) and representing it by specifically tailored image processing and
pattern recognition algorithms. Image processing based malaria diagnosis methods have been
widely studied to provide early and accurate detection of malaria parasite. Computer aided
malaria diagnosis system must be capable of differentiating between malaria infected cells and
healthy blood components. Generally, there are five major steps for analyzing microscopic
images namely: image acquisition, pre-processing, segmentation, features extraction and
classification [77]. The general architecture of automated diagnosis of malaria through image
processing adopted in several studies is explained in Fig. 4.

3.2.1 Image acquisition

Most of the studies on malaria detection have considered thin blood smear images; whereas
only a few studies have used thick blood smear images. Ross et al. [61] acquired images of thin
stained slides by using a charge-coupled device (CCD) camera with full 4 × optical zoom
connected to the light microscope with 1000 magnifications. Images were captured in the
JPEG format at the maximum resolution of the camera, 2048 × 1536 pixels. Images in [38, 68]
were captured by 3-CDD color video camera (JVC, Japan) connected to Olympus BX60
microscope under an oil immersion objective (100×). Same procedure was observed in several
studies where images were captured by charge-coupled device (CCD) camera connected with

Table 2 Staining variation of blood smear

S.N. Thick Blood Smear Thin Blood Smear

1. Thick blood smears are most useful for detecting the
presence of parasites.

Thin blood smears helps to discover which species
of parasite is causing the infection.

2. A thick blood smear is a drop of blood on a glass
slide.

A thin blood smear is a drop of blood that is spread
across a large area of the slide.

3. The blood films must be laked before or during
staining to rupture all the RBC so that only
WBC, platelets and parasites are visualized.

The purpose is to allow malarial parasites to be seen
within the RBC and to assess the size of the
infected RBCs compared to uninfected RBCs

4. Thick smears allow a more efficient detection of
parasites (increased sensitivity 11 times than thin
smear).

Less sensitive than a thick film especially where
there is a low parasitemia.

5. It is not fixed in methanol. It is fixed in methanol.
6. Thick smears are mainly used to detect infection and

to estimate parasitemia.
Thin smears allow the examiner to identify malaria

species, quantify parasitemia, and recognize
parasite forms like schizonts and gametocytes.

Fig. 3 Thick and thin blood smear
for microscope
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microscope. However, in several studies slide images were downloaded from websites where it
is available free of cost for research purpose. Gitonga et al. [21] obtained thin blood smear
images from two sources, namely Center for Disease Control (CDC) and Kenya Medical
Research Institute (KEMRI).

3.2.2 Pre-processing

The main purpose of pre-processing step is to generate low noise high contrast images for the
further processing. Due to staining variability of blood smear and camera adjustment, changes
occur in illumination of the microscope images. This particular problem erects difficulties for
classification of blood cells since it is hard to deal with proper segmentations of objects with
quite similar colors. Various studies have presented different methods to deal with pre-
processing issues such as illumination, noise reduction etc. Combination of different filters
can be used to reduce the illumination effect from both microscope and camera side. Even
though, it is possible to overcome the illumination issue somehow but still human factor is
involved in the preparation of blood slides that is due to the non-homogeneous and non-
standard staining concentration and appearances. Different techniques for image enhancement
were presented in [67]. Different solutions were proposed by researchers to address the
enhancement and noise problems in automated diagnosis of malaria.

Abdul-Nasir et al. [1] suggested solution to low contrast images of malaria blood slides.
Four contrast enhancement techniques namely global, linear, modified global and modified
linear contrast stretching were presented. It was observed from the results that modified global
and modified linear yield better results than conventional global and linear stretching. Hanif
et al. [24] presented dark stretching technique to enhance and segment the plasmodium
falciparum based on thick blood smear images. Dark stretching is a process that uses auto
scaling method which is a linear mapping function mostly used to enhance the brightness and
contrast level of the image. The approach was capable to enhance the image quality and
segment out region of interest in malaria slide images based on thick blood smear.

Sio et al. [68] used adaptive histogram equalization for image enhancement whereas Diaz
et al. [17] applied low pass filter to correct luminance differences on luminance channels. Filter
was designed for a window size which contained the largest image feature, i.e., a typical
erythrocyte size. Khan et al. [31] used non-linear filter SUSAN for noise removal, edge finding
and corner finding. Several researchers [18, 21, 43, 46, 61, 63] used median filter to remove
noise form smear images. For contrast adjustment of images, several researchers [42, 57, 65,
72, 80] used histogram equalization method. Median filter is a non-linear digital filtering
technique used for noise reduction.

Fig. 4 General architecture of automated diagnosis of malaria
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Morphological operation is well suited for biological and medical image analysis. It offers a
powerful tool for extracting image components that are useful for representing shape,
size and color of target regions. Morphological operators have been extensively used
as preprocessing for image enhancement in major studies [15, 16, 29–31, 61, 78, 80].
Erosion and dilation operations on raw smear images allow discarding undesired
patterns [25] and help in the selection of required cells or regions of interest. Pre-
processing techniques used by different researchers during automated diagnosis of
malaria are summarized in Table 3.

3.2.3 Segmentation of RBC and parasites

Segmentation is one of the most vital tasks in image processing and computer vision. It is
defined as the process of partitioning an image into a set of non-overlapping regions whose
union is the entire image. In the analysis of automatic classification of malarial parasite
procedures, most important and difficult stage is the accurate segmentation of blood smear
image into various elements such as RBC, WBC, malaria parasites etc. Image segmentation
identifies and segments possible parasites and erythrocytes (RBC) from thin blood smear

Table 3 Image pre-processing techniques applied in various studies

References Pre-processing techniques Remarks

Ross N.E. et al. [61], Gatc, J., et al. [18],
Savkare, S. and S. Narote [63, 64],
Anggraini et al. [4], Vishnu V. Makkapati
et al. [43], Malihi, L., K et al. [46], Di
Ruberto, C., et al. [15, 16], Gitonga, L.,
et al. [21], Ghosh M. et al. [19], Yi-Wen
Hung et al. [26]

Median filter or Mean Filter Ability to remove noise and
preserve sharp edges

Diaz et al. [17] Low pass filter Used for removal of high
frequency components

Ross N.E. et al. [61], F.Boray Tek et al. [78],
Di Ruberto, C., et al. [15, 16], Tsai M-H.
et al. [80], Khan, M.I., et al. [31], Kareem
et al. [29, 30], Khatri K et al [33].

Morphological Filtering Useful for removal of unwanted
objects, holes filling, splitting,
thinning and thinking.

Aimi Salihah A-N et al. [2], Contrast enhancement
based on partial contrast
stretching technique

Useful for increasing contrast of
the images

Sio S.W. et al. . [68], Purwar et al. [57],
Meng- Tsai M-H. et al. [80], Sheeba et al.
[65], Suradkar, P.T. [72], Maiseli, B.,
et al. [42], Somasekar, J. and B.E. Reddy
[69], Arco, J., et al. [5]

Adaptive Histogram
Equalization or Local
Histogram Equalization

Effective for low resolution images

Savkare, S. and S. Narote [63, 64],
Kaewkamnerd et al. [27]

Laplacian filter Used for sharping the edges in
image

Khan, M.I., et al. [31], Soni, j. [71] Non Linear Filtering:
SUSAN

Useful for noise filtering, edge
finding and corner finding

Das et al. [13] geometric mean filter Removal of Gaussian noise to
preserve edges.

J. Somasekar et al. [70] Gaussian low pass filters Effective for removing Gaussian
noise

Rakshit, P. and K. Bhowmik. [58] Wiener filter Used for removal of blur in images
due to linear motion or
unfocussed optics.
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image. To extract the infected erythrocytes, it is necessary to identify them from the combi-
nation of parasites and erythrocytes in the image, and then segment them from the background.
Cell segmentation can either be inductive or deductive. In inductive, the stained objects are
located first by using color intensity values and then regions that contain stained are segment-
ed, while in deductive method, the image is first segmented into background and foreground
before segmenting the stained object [77]. An adequate segmentation may result in efficient
detection and classification of malaria parasite. Segmentation process for detection of RBC
and parasite is illustrated in Fig. 5.

Recent studies have suggested several segmentation methods for blood cells. Di
Ruberto et al. [15] used green components to isolate RBC followed by opening a
non-flat disk shape structure element. Then watershed algorithm was used for seg-
mentation followed by separation of overlapped cells. Before applying watershed
algorithm, they used disk shaped structuring element to enhance the roundness and
compactness of cells to avoid the incorrect segmentation. Khan et al. [31] used
several algorithms for image segmentation because of image complexity. They have
used Otsu method [54] along with local and global threshold for RBC and parasite
segmentation, respectively. Then marker controlled watershed algorithm was used to
segment the touching cells whereas they have used clump splitting algorithm for
overlapped cells.

Sio et al. [68] suggested combination of edge detection, edge linking and clump splitting for
segmentation of RBCs. The edges were linked together at their terminal points to form closed
boundaries around the cells and then linked together if their terminal points were in close
proximity. Afterwards, the parasite detection is done with the help of binary mask. Savkare
et al. [63, 64] used Laplacian filter on green channel of blood smear image and then applied
Otsu threshold to get binary image of original slide image. Objects having area less than
average area of RBCs were removed using morphological opening with disk shaped structur-
ing element. Kaewkamnerd et al. [27] segmented the background by using histogram on HSV
color format. After background segmentation, image was partitioned into small windows of
300 × 300. Finally, malaria parasites were identified based on their size. Aimi Salihah A-N
et al. [2] applied K-Mean on to the three color space RGB, HSV and CY followed by seeded
region growing area extraction in order to segment the infected cells. Form the results, it was
observed that segmentation using saturation component of C-Y color model provided best
results.

Fig. 5 Illustration of blood smear image segmentation. a. Original image, b. Segmentation of Red Blood Cell, c.
Segmentation of malaria parasite
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Lee and Chen [40] presented a method for segmentation of overlapped blood cells by the
combination of canny edge detectors and Otsu algorithm. Das et al. [13] applied marker
controlled watershed algorithm for segmentation of blood cells and possible parasites.
Kumarasamy et al. [38] presented a four stage-based segmentation method namely edge
detection, edge linking, clump splitting, and parasite detection. Somasekar and Reddy [69]
presented an edge-base segmentation method for segmentation of infected erythrocytes, pro-
viding a consistent and robust segmentation of parasite infected erythrocytes. Fuzzy C-means
clustering was then applied to extract infected erythrocytes. Arco et al. [5] proposed an adaptive
threshold technique for segmentation of blood cells and malaria parasite by selection of local
features which significantly improved the accuracy of the algorithm as compare to other
approaches.

Segmentation techniques used by different researchers are summarized in Table 4 and it can
be observed that most of the researchers applied Ostu algorithm [54] for segmentation of
RBCs and malaria parasites. Likewise watershed and marker controlled watershed algorithm
were used by various researchers at segmentation stage. Watershed algorithm provides best
results for overlapping cells. Mandal et al. [47] used the normalized cut (NCut) algorithm and
tests it over various color spaces. The results exhibited that the performance of the NCut
algorithm is best in HSV color space.

3.2.4 Features extraction

Feature extraction is the process of image representation in non-visual form. It is a critical step
in most computer vision and image processing solutions because it marks the transition from
pictorial to non-pictorial data representation [50]. Parasites and other stained components are
flexible objects with large variations in the shape, size, and morphology. The color information
is valuable but is not adequate to distinguish between the other stained objects and plasmo-
dium, and also within the different species. The features which give dominant difference
between normal cells and infected cells are identified as feature set. Most of the studies have
reported both texture as well as geometric features for describing malaria infection stages.

Geometric features Geometrical features remain very important for complex shape recog-
nition and many researchers have used them for malarial parasite recognition. Area
and perimeter are the features used to represent the size of the cells while shape features
can be grouped into region and boundary-based features. To extract the features, cell image is
converted into binary image where cell pixels are represented by non-zero value. In context of
automated diagnosis ofmalaria parasite, geometric features are used for classification ofmalaria
species and life-stages of each species regarding shape of parasite. However, geometric features
are not suitable for classification of infected RBC and un-infected RBC. Zhang, D. and G. Lu
[86] presented review on shape representation and description techniques. The shape and size
features which were used by majority of researchers in automated diagnosis of malaria are
briefly discussed below.

& Area: Area of the cell or malaria parasite is represented by the total number of non-zero
pixels within the cell boundary.

& Perimeter: Perimeter is the total length of the object boundary. It is calculated by
measuring the sum of the distances between successive boundary pixels of blood cells
or malaria parasite.
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& Eccentricity: Eccentricity of an object is defined as the ratio of the major and minor axes of
the object and defined as

Eccentricity ¼ Length of Major Axis

Length of Minor Axis
ð1Þ

& Convex Hull: Smallest convex polygon that can contain the region.
& Convex area: In some cases, convex hull is calculated and its area is termed as number of

pixels inside its boundary.
& Solidity: Solidity is the ratio of actual cell area to convex hull area as

Solidity ¼ Area
Convex Area ð2Þ

& Compactness: Compactness is the ratio of area and square of the perimeter

Compactness ¼ Area
Perimeter2 ð3Þ

& Circularity: Circularity measurement of the cell is defined as the ratio between the blood
cell or parasite area and the square of its perimeter as given in eq. 4. With the help of this
feature circularity of blood cells or malaria parasite are evaluated which is further used in
classification stage.

Circularity ¼ 4πA
P2 ð4Þ

& Orientation: Angle between the x-axis and the major axis of the cell is known as
orientation.

& Rectangularity: Rectangularity of an object is defined by the ratio A/Am of the object area
(A) and minimal bounding box area (Am). This ratio is 1 if the object is a rectangle, and
smaller for all other shapes. With the help of this feature, rectangularity of cell and parasite
are evaluated.

Texture features Texture is a powerful descriptor of an image that describes the spatial
distribution of intensity or color in a particular region. The texture of a healthy red blood cell
shows uniform intensity across the cell surface under microscopic image. Texture
features discussed below are used for identification of infected RBCs and their
classification into two classes i.e., infected and non-infected. However, it is a difficult
task to classify parasite species and life-stages by using only texture features. For
classification of parasite species and life-stages geometric features are used along with
texture and color feature. Image texture is well described by properties like unifor-
mity, coarseness, roughness and regularity. Some basic texture features used by
researchers for classification of malaria are defined below:

& Mean: Mean value of gray level of pixels (μ) inside red blood cell or malaria parasite can
be calculated by sum of all the gray level values of the cell pixels divided by the number of
cell pixel
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μ ¼ ∑n
i¼1xi
n

ð5Þ

Where Xi is the gray level of ith pixel inside cell and n is total number of pixels.

& Variance: Variance is the average of the squared differences from the mean:

σ2 ¼ ∑n
i¼1 Xi−μð Þ
n−1

ð6Þ

& Standard deviation: It is defined as square root of variance. The standard deviation
provides a concise representation of the overall contrast of blood cells. Mathematically
standard deviation is:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Xi−μð Þ
n−1

r

ð7Þ

& Skewness: Skewness is a measure of the asymmetry of the data around the sample mean.
The skewness of the normal distribution is zero. The skewness of a distribution

Skewness ¼ E x−μð Þ3
σ3

ð8Þ

where σ is the standard deviation of x and E (t) is expectation operator.

& Entropy: The entropy measures the randomness of the intensity showing in the blood cell
region and measured as

entropy ¼ −∑L−1
j¼0p r j

� �

log2 p r j
� �� � ð9Þ

& Energy: Uniformity within the blood cell can be measured by energy which is calculated
as

energy ¼ ∑
L−1

0
p r j
� �� �2 ð10Þ

& Correlation: Correlation between pixel values and its neighborhood is represented

Correlation ¼
∑
N−1

i¼0
∑
N−1

j¼0
i; jð ÞP i; jð Þ−μxμy

σxσy
ð11Þ

where σx , σy, μx and μy indicate the standard deviations and means of Px, Py; whereby Px, Py
correspond to the partial probability density functions. Px(i) = ith entry in the marginal-
probability matrix obtained by summing the rows of P(i, j). Das et al. [13] computed a set
of 96 features textural and morphological features. They extracted 80 textural (entropy,
Haralick textural features, local binary pattern, fractal dimension, histogram based features,
gray level run length matrix based texture) along with 16 morphological features (shape
features and Hu’s moment) to discriminate six types of infected and non-infected erythrocytes.

Diaz et al. [17] used mean, standard deviation, skewness, kurtosis and entropy as basic
descriptors of the histogram properties. Lee and Chen [40] used shape features such as cell
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circularity, medial axis ratio, cell deform ratio, eccentricity and Hausdorff distance along with
texture features such as mean intensity, variance, smoothness of the cell and entropy for
classification of infected and uninfected red blood cells. Ruberto et al. [15] used combination
of color and morphological features for analysis and classification of infected cells. Raviraja S
et al. [59] used the invariants moments for detection of infected erythrocytes. Rosado et al. [60]
used combination of geometric, color and texture features with two classessupport vector
machine (SVM) classifier. Generally features used in analyzing red blood cells can be grouped
into geometric features and texture features as shown in Table 5.

3.2.5 Classification

A good segmentation and feature extraction process greatly simplifies the design of the
classifier. A comprehensive review on classification techniques was presented by Kotsiantis
et al. [36]. Classification process in automated diagnosis of malaria is generally adopted for
two purposes: for deciding whether or not an erythrocyte was infected and for classification of
species and life-stage of malaria parasite. List of various classifiers used by different re-
searchers for classification of infected cells or life-stage and species is described in Table 6.

Tek et al. [76] used distance weighted K-nearest neighbor classifier to differentiate between
parasites and other stained components or artifacts. However, the classification of species and
life stage was not implemented. Lee and Chen [40] used a hybrid neural network architecture
for classification of healthy RBC and infected RBC. However classification of parasite species
and life-stage were also passed over in this method. Similarly, Mushabe al. [49] used K-nearest
neighbor and linear Bayesian classifier for classification infected RBCs. However, from the
diagnosis point of view the essential task is to identify parasites in the presence of other stained
structures, artifacts, and then finally identify the species and life-stage of parasite as applied in
[13, 15, 17, 31, 61, 78]. Diaz et al. [17] carried out parasite classification in two steps: deciding
about the status of RBC (infected/non-infected) and identification of infected stage. Two
classifiers were evaluated for these phases: a multilayer perceptron neural network (MLP)
and SVM.

Table 5 Categorization of features used for classification of erythrocytes and malaria parasite

References Category Name of features

Devi RR et al [14], Tek, F.B et al. [76, 78], Lee,
H. and Y.-P.P. Chen [40], Ross N.E. et al.
[61], Di Ruberto, C., et al. [15], Savkare, S.
and S. Narote [63, 64], Malihi, L., K et al.
[46], Di Ruberto, C., et al. [15], Das et al.
[13], Gitonga, L., et al. [21], Kumarasamy
S.K et al. [38], Raviraja S et al. [59].

Geometric
Features

Area, perimeter, area ratio, convex area, solidity,
form factor, moments, compactness,
eccentricity, number of lobes, circularity,
orientation, rectangularity, symmetry,
concavity, and elongation

Tek, F.B et al. [76, 78], Lee, H. and Y.-P.P. Chen
[40], Díaz et al. [17], Prasad et al. [55], Ross
N.E. et al. [61], Savkare, S. and S. Narote
[63, 64], Widodo, S [83], Miss. S Annaldas
et al. . [66], Khan, M.I., et al. [31], Das et al.
[13], Gual-Arnau et al. [22], Chayadevi, M.
and G. Raju [10], Gitonga, L., et al. [21],
Yunda et al. [85]

Texture or
color
features

Mean, variance, standard deviation, skewness,
smoothness, entropy, energy, homogeneity,
correlation, regularity, coarseness, and color
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Boray et al. [78] compared three different classification models for species and life-cycle-
stage identification. The first model (20-class) considered performing detection, species, and
life-cycle-stage recognition in a single classification, which also allows differentiating within
the non-parasite classes. The second and third model considered performing a binary detection
previously followed by a single 16-class classification or two 4-class classifications for

Table 6 Different Classification techniques used by researchers for classification of infected erythrocytes and
classification of species, life-stage of malaria parasite

References Classification Technique Remarks

Díaz et al. [17], Tek, F.B et al.
[76, 78], Malihi, L., K et al. [46],
Gual-Arnau et al. [22]

K-nearest neighbors
classifier (KNN)

The classification of unknown
sample is done simply based
on comparison with stored
training data.

Díaz et al. [17], Savkare, S. and S.
Narote [63, 64], Malihi, L., K
et al. [46], Widodo, S [83],
Miss. S Annaldas et al. [66],
Das et al. [13], Chayadevi, M.
and G. Raju [10],
Kumarasamy S.K et al. [38],
Linder, N., et al. [41]

Support Vector
Machine (SVM)

SVMs are well suited to deal with
learning tasks where the number
of features is large with respect
to the number of training instances.

Lee, H. and Y.-P.P. Chen [40],
Miss. S Annaldas et al. [66],
Gitonga, L., et al. [21],
Yunda et al. [85]

Artificial Neural
Network (ANN)

It uses Nonparametric approach.
Performance and accuracy of
classification depends upon the
network structure and number
of inputs.

Díaz et al. [16], Das et al. [13] Naive Bayes The main advantage of the naive Bayes
classifier is its short computational time
for training.

Tek, F.B., et al. [78], Malihi, L.,
K et al. [46]

Fisher linear
discriminant (FLD)

Perform classification of the objects on
the basis of learning and minimization
of some error criterion.

Tsai M-H. et al. [80], Genetic algorithm Result depends on the chosen
chromosome encoding scheme,
crossover and mutation
strategies as well as fitness function.

Purwar et al. [57], K-Mean Clustering K-means clustering is unsurprised
classification method which cluster
unknown pixels in number of classes.

Tek, F.B., et al. [78], Khan, M.I.,
et al. [31], Ross N.E. et al. [61],
Chayadevi, M. and G. Raju [10]

Back propagation
neural network (BPNN)

It overcomes the limitations that
single-layer networks have.

Leila Malihi et al. [46] Nearest Mean
Classifier (NM)

Useful in situations with few samples
and large number of features

Premaratne, S.P., et al. [56] Feed Forward neural
network

The training subset is used in optimization
and the validation subset to estimate
the generalization error.

Miss. S Annaldas et al. et al. [66] Adaptive Neuro Fuzzy
interface System

It applies a hybrid-learning algorithm,
the gradient descent method and the
least-squares method, to update
parameters.

Suryawanshi M.S. and
V. Dixit [73]

Decision tree using
Euclidean Distance

Provides hierarchical associations between
input variables to forecast class
membership and provides a set of rules.
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identification, respectively. They implemented the mentioned classes by using KNN, fisher
linear discriminant (FLD) and the back propagation neural network (BPNN) classifiers in
which KNN gave better result. Ross et al. [61] used back propagation feed forward neural
network for classification of infected erythrocyte and species of parasite if infected. The
species for every infected erythrocyte is determined, and the sample species are those having
highest number of parasites in the sample. The accuracy of this classifier was claimed to be
73%.

4 Discussion

In this paper, a systematic review of automated diagnosis of malaria based on microscopic
blood smear images has been presented. A complete malaria diagnosis system must have the
ability to perform image acquisition, pre-processing, segmentation and classification task. In
order to perform diagnosis on malaria blood smear images, diagnosis system of malaria
requires the ability to detect the presence of parasite in a blood sample by differentiating
between non-parasitic stained objects (artifacts, white blood cell, and red blood cell) and
malarial parasites. To specify the infection, an additional process of species and malaria
parasite development stages identification by differentiating species and development stages
is also required if the blood sample is diagnosed as positive. However, majority of existing
malaria-related image analysis studies fail to fulfill above mentioned requirements.

In pre-processing, median filter has been found to be very effective for reducing impulse
noises from the microscopic images. Local histogram technique was widely used for enhanc-
ing the microscopic blood smear images. Abdul-Nasir et al. [1] used a modified image
enhancement techniques i.e., modified global and modified linear contrast stretching with
conventional global and linear contrast stretching. This method enhanced the image from the
luminance information of an entire image. Image with a high global contrast will cause a
global feeling of a detailed and variation-rich image. The results showed that modified global
and modified linear contrast stretching techniques have successfully improved the contrast of
the parasites and the infected red blood cells. Hanif et al. [24] presented dark stretching
technique to enhance and segment the malaria parasite blood smear images. In dark stretching
method auto scaling which is a linear mapping function mostly used to enhance the brightness
and contrast level of the image. Results showed that the approach is capable to enhance the
image quality and segment the regions of interest in malaria blood smear images.

Segmentation is considered as a critical step in automated diagnosis of malaria parasite. A
good segmentation simplifies the process of parasite identification and feature extraction. From
Table 4 it has been expressed that most of researchers used Otsu threshold [54] for segmen-
tation of erythrocytes and malaria parasite. The benefit of Otsu threshold is that it selects
optimal threshold based on minimization of a criterion function. However, Otsu threshold fails
in segmentation of overlapping cells. For segmentation of overlapping cells Di, Rubeto et al.
[16] applied watershed segmentation. Applying a watershed transform on the image directly is
generally useless unless the objects are flat or at least smooth grey level regions. Hence, a
marker controlled transform is usually preferred which basically replaces the regional minima
with the externally supplied markers [75]. Researchers [13, 31, 71] applied marker controlled
watershed for separation of overlapping cells. Similarly, circular hough transform, K-mean
clustering, edge detection algorithm and zack algorithm were used in various studies in
segmentation.
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Texture, geometric and color features have been evaluated for classification of infected
erythrocytes and infection stages of malaria. In majority of the existing methods, researchers
have used combination of texture and geometric features at feature extraction stage [13, 40,
78]. However, some have used either texture features or geometric features for classification
purpose. It has been observed from various studies of automated diagnosis of malaria that
texture or color features are used for classification of infected and healthy erythrocytes while
geometric features are used for identification of parasite species and life-stage. Comparative
evaluation of the performance of reported malaria detection methods is shown in Table 7.
Boray et al. [78] used a concatenated feature of color histogram, local area granulometry and
shape measurements vector. They used 20 classes for classification of four stages of each
species, white blood cells, artifacts and platelet. The results were evaluated with three different
classifiers including fisher linear discriminant (FLD), back propagation neural network
(BPNN) and KNN with accuracy 90.1, 92.0 ± .4 and 93.3, respectively. Diaz et al. [17]
applied two classifiers including multilayer perceptron neural network (MLP) and SVM
during classification and acquire the best performance by SVM with a polynomial
kernel, which exhibited an effectiveness of 0.95, a sensitivity of 94%, and a speci-
ficity of 99.7%. Das et al. [13] compared the performance of SVM and Naive Bayes
classifier for Vivax and Falciparum infection stage classification by using geometry,
intensity and texture information. The accuracy of SVM and Naive Bayes were 76%
and 84%, respectively in classification with top 19 features. Lee. and Chen [40] used
hybrid neural network based classifier for red blood cells, based on the shape and
texture features. Their system showed comparative advantages over the conventional
neural network classifier with single input layer, which usually requires an implemen-
tation of feature selection strategy to improve classification results. As exhibited in
Table 7, SVM has been used by most of the researchers. The main advantage of the
SVM is its extraordinary generalization ability and extremely powerful learning rate,
leading to the global minimum of the defined error function. From classification point
of view, several classifiers have been presented for the automatic classification of
malarial parasites in the presence of other stained objects in blood smear images.
However, these studies rarely focused on the life-stage classification. It is better to
find life-stage of parasite and this can be solved using the multi-class classification
instead of binary class problem i.e., parasite or non-parasite. Various methods of
automated parasitemia counting have been reported by different researcher as summa-
rized in Table 8. They evaluated the performance of their proposed algorithms of
parasitemia count by comparing with the manual counting procedure.

4.1 Possible directions for future research

Automated detection and classification of malaria parasite can help the pathologists in the
disease identification and drug development. Although, a significant amount of work has been
done in this field, but still there are some challenges which lead to lower accuracy in
identification of malaria parasites. Therefore, improvements are required to fulfill the expec-
tations of pathologists, which can reduce the problems faced in manual analysis. From the
literature review, it has been observed that most of the studies are limited to detection of
malaria parasite in blood smear image. Identification of species and life-stage of malaria
parasite have been unheeded in most of studies. However, researchers in [21, 46, 78, 80]
diagnosed four species of malaria parasite but the results are still not according to expectation
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of pathologists. The accuracy of malaria parasite identification may be affected by human
factor in preparation of blood slides, microscope, noise and several other factors such as scale
correction and color normalization. To overcome under- or over-staining condition of blood
slides, color features, hyperspectral imaging could be used. The different spectral ranges of
blood sample images are very helpful for the extraction of meaningful regions. One of the major
challenges that exist in segmentation of malaria parasite is to distinguish parasite from WBC and
other staining objects as they have the same color and intensity. Existing methods based on
segmentation are not applicable to all fields of a blood slide. Global segmentation can be replaced
by localized malarial parasite analysis. Thus, it may be possible to perform the malarial parasite
classification without segmenting them into infected cells. The segmentation method can be
enhanced to such level that it process efficiently blood smear image without noise removal and
contrast adjustment. Similarly, in case of parasitemia measurement, exact numbers of healthy
erythrocytes and infected erythrocytes need to be counted, thus, overlapping cells may yield to
inconsistent results. Therefore, a suitable algorithm can be used for counting overlapping cells

Table 7 Comparative study of performance of various malaria detection methods

Authors Classes/ group for Malaria Parasite Performance statistics (%)

Aimi Salihah A-N et al.
[2]

Two classes (malaria infected and
non-infected)

Accuracy: 99.46; F-score:93.70

Diaz et al. [17] Two classifiers: one for infected
RBC and other for life stage of
malaria parasite.

For infected RBC the specificity of
99.7% and a sensitivity of 94%.
The infection stage was
determined with an average
sensitivity of 78.8% and
average specificity of 91.2%.

Tek, F.B., et al. [78] 20 classes (04 stages of each species) Sensitivity: 72.4; Specificity: 97.6
Das et al. [13] Six classes for two species of malaria

P. vivax and P. Falciparum
Sensitivity: 99.72; Specificity:

84.39; PPV: 98.64 and
Accuracy: 96.3

Tek, F.B et al. [76] Two classes parasite /non-parasite sensitivity:74%, specificity:98%
Ghosh M. et al. [19] Two classes (malaria infected and

non-infected)
Accuracy: 98

Halim, S., et al. [23] Three classes (Gametocyte, haemozoin
and schizonts)

Precision: 89.42; Recall: 91.65

Kareem et al. [29] Two (malaria infected and non-infected) Sensitivity: 90; Accuracy: 87
Prasad et al. [55] Two (malaria infected and non-infected) Accuracy:96
Ross N.E. et al. [61] Three classifier (infected, non-infected

and species of malaria)
85% and a PPVof 81%

Gatc, J., et al. [18] Two (malaria parasite and non-parasite) Sensitivity: 85.52; PPV: 92.85
Purwar et al. [57] Two (malaria infected and non-infected) Sensitivity: 100; Specificity:50–80
Gitonga, L., et al. [21] 12 (04 stages of each species) Accuracy: 99 for recognizing

stages and 96.2 for malaria
species

Khan, M.I., et al.44] Two-stage tree classifier (P. Falciparum,
P.Vivax, P. Ovale or P. Malariae)

Sensitivity: 85.5% and PPV: 81%.

Leila Malihi et al. [46] Four (P. falciparum, P. vivax, P. ovale,
P. malariae)

Accuracy: 91

Kumarasamy S.K et al.
[38]

Three (ring, trophozoite, gametocyte) Accuracy: 86

Somasekar, J. and B.E.
Reddy [69]

Parasite/ Non-parasite sensitivity: 98%, specificity: 93.3%
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correctly. Likewise, classification stage needs to be improved so that it could better classify infected
cells as well as identify species and life-stage of parasite by using optimal features.

5 Conclusion

This paper provides a basis to researchers who want to start research in the area of
automated diagnosis of malaria based on microscopic blood smear images. The focus
of this article is to review, analyze and categorize malaria recognition algorithms,
techniques and methodologies and uncover existing limitations. The problems faced
by pathologist are also discusse. The review is presented for four significant stages of
automated malaria parasite diagnosis namely image pre-processing, parasite segmen-
tation, feature extraction and classification.

In preprocessing, problems concerning to color variations, illumination variations, and
presence of noise in the stained microscopic images are discussed. To overcome under or
over-staining condition of blood slides, color features, hyperspectral imaging can be used.
Different spectral ranges of blood sample images are very helpful for the extraction of
meaningful regions. Segmentation is the second major step of malaria parasite classification
and highly affects the performances of the classifiers. Global segmentation can be replaced by
localized malarial parasite analysis. Thus, it may be possible to perform the malarial parasite
classification without segmenting them into infected cells. Similarly, the color and texture
along with morphological features is valuable feature information. In classification point of
view, it may be better to add contextual knowledge into the classification for malarial parasites.
This can be solved using the multi-class classification instead of binary class problem, i.e.,
parasite or non-parasite.

This review may aid researchers to go through the state-of-the-art methods presented in last
two decades along with their limitations. Since, automated analysis of malaria cannot be
achieved only through computer vision scientists but also required the involvement of
pathologists. Collaboration between the two communities will lead development of more
robust and effective computer aided pathological image analysis techniques.

Table 8 Performance based comparison of parasite count methods

Authors Method Performance Remarks

Purwar et al. [57] Probabilistic k-means
clustering

Sensitivity: 100 and Specificity: 50–88

Diaz et al. [17] support vector machine
(SVM)

Sensitivity of 94% and a specificity of 99.7%.

Sio S.W. et al. [68] Morphological approach Discrepancy: 2.04 ± 2.86 for poorly separated
cell and 0.25 ± 0.18 for well separated cell

Kumarasamy S.K et al. [38] support vector machine (SVM) Accuracy: 80
Halim, S., et al. [23] color co-occurrence matrix

(CCM)
precision:92% and recall rates: 95%

Arco, J., et al. [5] Morphological approach Discrepancy:3.54
Gitonga, L., et al. [21] Artificial neural network Accuracy:79
Savkare, S. and S. Narote [63] SVM with RBF kernel Sensitivity: 93.12 and Specificity: 93.17
Linder, N., et al. [41] SVM Sensitivity 95% specificity 100% and

correlation coefficient between manual
and automated count 0.97
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