
IEE
E P

ro
of

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Efficient Conversion of Deep Features to
Compact Binary Codes Using Fourier

Decomposition for Multimedia Big Data

1

2

3

Jamil Ahmad, Student Member, IEEE, Khan Muhammad, Student Member, IEEE,
Jaime Lloret, Senior Member, IEEE, and Sung Wook Baik, Member, IEEE

4

5

Abstract—Exponential growth of multimedia data has6
been witnessed in recent years from various industries,7
such as e-commerce, health, transportation, and social net-8
works, etc. Access to desired data in such gigantic datasets9
require sophisticated and efficient retrieval methods. In the10
last few years, neuronal activations generated by a pre-11
trained convolutional neural network (CNN) have served as12
generic descriptors for various tasks including image clas-13
sification, object detection and segmentation, and image14
retrieval. They perform incredibly well compared to hand-15
crafted features. However, these features are usually high16
dimensional, requiring a lot of memory and computations17
for indexing and retrieval. For very large datasets, utilization18
of these high dimensional features in raw form becomes in-19
feasible. In this paper, a highly efficient method is proposed20
to transform high dimensional deep features into compact21
binary codes using bidirectional Fourier decomposition.22
This compact bit code saves memory and eases compu-23
tations during retrieval. Further, these codes can also serve24
as hash codes, allowing very efficient access to images in25
large datasets using approximate nearest neighbor (ANN)26
search techniques. Our method does not require any train-27
ing and achieves considerable retrieval accuracy with short28
length codes. It has been tested on features extracted from29
fully connected layers of a pretrained CNN. Experiments30
conducted with several large datasets reveal the effective-31
ness of our approach for a wide variety of datasets.32

Index Terms—Deep learning, Fourier transform, hash33
codes, image retrieval, industrial informatics.34

I. INTRODUCTION35

B IG data has recently emerged as a key concept, denot-36

ing the gigantic volume of data generated at a rapid pace37

due to the progress in sensing, communication, storage, cloud38

computing technologies, and algorithms. Recent statistics reveal39
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that 1200 Exabytes of data is generated annually and the rate is 40

growing rapidly [1]. A huge fraction of this data is multimedia 41

data (images and videos), generated by various industries, such 42

as health, surveillance, agriculture, social web, online streaming 43

services, movies, games, and internet protocol television (IPTV) 44

industry [2]. For example, Facebook alone contains more than 45

40 billion photos [3]. Similarly, more than 500 h of videos are 46

uploaded to YouTube every minute [4]. These massive amounts 47

of data present enormous challenges for businesses and indus- 48

tries. At the same time, it provides opportunities for impres- 49

sive future growth, based on effective utilization of the data 50

for analysis. For instance, progress in medical imaging tech- 51

nologies allows visual analysis of patient through a variety of 52

means including endoscopy, magnetic resonance imaging, ra- 53

diography, ultrasonography, and many others. It causes huge 54

amounts of data to be generated, which is stored for imme- 55

diate or future use. Similarly, surveillance cameras deployed 56

in wake of the recent security concerns throughout the globe, 57

also generate huge amounts of multimedia data, required to 58

be stored and properly indexed for possible future use. Major 59

issues with these gigantic multimedia repositories include trans- 60

mission, management, storage, and their efficient indexing and 61

retrieval. 62

Providing reliable and efficient access to relevant data in large 63

image repositories based on their contents is a highly challeng- 64

ing task which has been studied over the course of almost three 65

decades. Content-based image retrieval (CBIR) methods allow 66

retrieval of relevant images based on the content similarity be- 67

tween the query and target images [5], [6]. A core component 68

of CBIR systems aims to represent images as feature vectors or 69

feature histograms that correspond to the color or texture content 70

of the image [7]. These systems can also be used to personalize 71

and recommend contents for IPTV delivery services [8]. Tradi- 72

tionally, CBIR relied on hand-engineered features, such as scale 73

invariant features transform [9], bag-of-visual-words histograms 74

[10], [11], fisher vectors [12], vectors of locally aggregated de- 75

scriptors [13], GIST [14], and CENsus TRansform hISTogram 76

[15]. Each of these methods represented images in terms of low- 77

level features; however, these features often fail to model high- 78

level semantics in images. Therefore, their performance in large 79

and challenging datasets was not very satisfactory [16]. In recent 80

years, the hand-engineered feature extraction methods have been 81

overshadowed by the feature learning based methods including 82
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deep convolutional neural networks (CNN), and deep denoising83

auto-encoders [17], [18]. They automatically extract features84

from images, which have been used in a variety of tasks, such as85

image classification, object localization, recognition, segmen-86

tation, and image retrieval [19]. CNNs have been widely used87

by the image retrieval community and have achieved state-of-88

the-art performance [16], [20]–[22]. These architectures have89

several convolutional, pooling, and fully connected (FC) lay-90

ers, arranged in a hierarchy where successive layers learn com-91

plex features of the input [23]. Deep features are usually ex-92

tracted from the FC layers of CNN which correspond to acti-93

vation values of the neurons in those layers. In a typical CNN,94

these features often have thousands of dimensions. Though,95

these features are capable of representing images effectively,96

image indexing, and matching using these features become in-97

feasible for large datasets [21].98

Hash-based image retrieval methods aim at allowing efficient99

access to relevant data in large datasets using approximate near-100

est neighbor (ANN) search approaches. In wake of the growing101

demands for efficient access to large image repositories, these102

methods have appealed significant attention in recent years [24].103

They work on the principle of locality sensitive hash functions104

that transform high dimensional features to low-dimensional105

hamming space (binary codes) and attempt to preserve origi-106

nal neighbors in the hamming space [25]. These compact codes107

are then used to directly retrieve nearest neighbors of the query108

image from the hamming space without exhaustive search. A109

large variety of hashing methods have been proposed in re-110

cent years, which attempt to derive compact binary codes from111

image features. A few notable methods include locality sen-112

sitive hashing (LSH) [25], [26], principal component analysis113

based hashing (PCAH) [27], spectral hashing (SH) [28], spheri-114

cal hashing (SpH) [29], and density sensitive hashing (DSH)115

[30], etc. Hash methods may be data-dependent or data-116

independent. They may be trained in either supervised or un-117

supervised manner. Typically, these methods are trained for a118

particular dataset to generate hash codes of a certain length. If119

the data changes or the length of the hash code needs to be modi-120

fied, the training procedure has to be rerun. These characteristics121

limit their utilization in real applications.122

In this paper, we propose an efficient method to transform123

selected deep features directly into compact binary codes. It124

does not require any training and can be efficiently executed on125

a graphics processing unit (GPU) to quickly convert deep fea-126

tures to binary codes. We show that deep features from the FC127

layers of CNNs are highly redundant, hence, we propose a fea-128

ture selection algorithm to identify effective deep features based129

on neuronal sensitivity and diversity. The proposed hash codes130

yield considerable retrieval performance for 256 and 512 bit131

codes. Major contributions in this work are summarized as132

follows.133

1) We show that the high dimensional deep features ex-134

tracted from FC layers of a pretrained CNN are redun-135

dant and a significant number of activation features can136

be removed without any loss in retrieval performance,137

particularly when dealing with images of a particular cat-138

egory such medical or surveillance.139

2) An effective feature selection algorithm is proposed for 140

deep feature based on neuronal sensitivity and diversity 141

measures. 142

3) A highly efficient method is proposed for transforming 143

deep features into compact binary codes, which can be 144

used as hash codes for efficient image search. Our method 145

uses bidirectional fast Fourier transform (BD-FFT) which 146

allows hash codes of desired length to be computed di- 147

rectly without requiring any training. The method can be 148

easily implemented on a GPU for significant speedup in 149

hash code computation at large scale. 150

4) We also show that the selected deep features yield better 151

hash codes with the proposed BD-FFT method, and offer 152

better locality sensitivity with 256 and 512 bit codes. 153

The rest of the paper is organized as follows: Section II 154

highlights strengths and weaknesses of recent hash-based re- 155

trieval methods. Section III explains the proposed method in 156

detail, highlighting the key features of the presented algorithms. 157

Section IV reports evaluation results of the proposed method on 158

several popular datasets. The paper is concluded in Section V 159

with some future research directions. 160

II. RELATED WORK 161

Extraction of discriminative features is a primary factor in 162

the success of CBIR systems. The recent deep learning based 163

methods, especially CNNs yield highly discriminative features, 164

which achieve state-of-the-art performance in CBIR. Several 165

frameworks have been proposed for utilizing deep features 166

for image retrieval in challenging scenarios. For instance, 167

Krizhevsky et al. [23] showed that neuronal activations 168

extracted from FC layers can be used as feature descriptors and 169

image matching can be performed using standard Euclidean 170

distance. They also showed that these high dimensional features 171

can be easily compressed with dimensionality reduction 172

methods, such as principal component analysis (PCA), sacri- 173

ficing accuracy for some degree of efficiency. Razavian et al. 174

[17], [18] and Babenko et al. [21], [22] showed that features 175

from a pretrained CNN can be used as generic descriptors 176

for image retrieval and other related tasks. They showed 177

that features from a pretrained CNN, trained on a very large 178

dataset (ImageNet [31]) achieve state-of-the-art performance, 179

surpassing traditional hand-engineered features by a huge 180

margin. Deep features from FC layers are very powerful global 181

representations, however, they are high dimensional and directly 182

utilizing them becomes inefficient, particularly for large scale 183

datasets [32]. 184

Large scale datasets demand efficient methods for storing 185

millions of images in memory and quickly finding relevant im- 186

ages to a query image. ANN search methods like LSH have 187

shown promising results in recent years. Typically images are 188

represented as features vectors in high dimensional Euclidean 189

space, such that the Euclidean distance corresponds to image 190

similarity. The main objective of hashing methods is to generate 191

a low-dimensional embedding in hamming space while preserv- 192

ing the neighborhood. Hence, when a query is issued, the hash 193

code of the query image is used to efficiently access nearest 194
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Fig. 1. Proposed framework.

neighbors of the query image using hamming distance. Based195

on this idea, several approaches have been presented in the re-196

cent years. For instance, PCAH [33] used principle directions197

of data as the projection vectors to transform features to binary198

codes. In LSH [25], [34], the binary code is computed through199

random linear projection with a random threshold. In theory,200

hamming distance between LSH codes and Euclidean distance201

between image pairs are highly correlated, however, in practice202

it can lead to very inefficient codes. SH [28] selects binary code-203

words though minimum distance between similar points, where204

similarity is defined by an approximate proximity matrix. Theo-205

retically, it performs better than LSH, however, its optimization206

is difficult to generalize for new data points. This problem is207

solved with SpH [29] which uses Eigen functions of weighted208

Laplace–Beltrami operations with the assumption of having a209

multidimensional uniform distribution. It is highly efficient than210

SH for hash code generation, however, its optimization is com-211

putationally expensive. DSH [30] is an extension of LSH which212

utilizes random projections and also uses geometrical structure213

of the data to guide the projections. It partitions the data points214

into k-groups and splits each pair of adjacent groups with a215

projection vector. From all such projections, DSH selects the216

vectors based on the maximum entropy principle.217

Hash-based image retrieval methods significantly improve re-218

trieval efficiency in large scale datasets. However, these methods219

are difficult to implement in real applications and some of them220

require sufficient training data and time, while others are slow221

at transforming feature vectors to hash codes. An ideal hash-222

ing method is computationally efficient, simple to implement223

and yield state-of-the-art performance for a variety of datasets.224

In this paper, we present a simple and highly efficient way225

of transforming deep features to compact binary codes using226

BD-FFT.227

III. PROPOSED METHOD228

The proposed framework consists of two modules, feature229

selection and hash code generation as shown in Fig. 1. First, we230

studied deep features from FC layer of a pretrained VGG-16231

CNN [35] in order to determine optimal set of features for a 232

particular type of data. Once the optimal features are selected, 233

they are converted to binary codes of different lengths using 234

bidirectional FFT. Details of both modules are provided in the 235

subsequent sections. 236

A. Deep Features for Image Retrieval 237

Informatics and analytics systems make use of efficient ways 238

to access relevant information from large datasets. Visual data 239

constitute a large fraction of the data generated by different in- 240

dustries, where accurate and efficient access will allow analysts 241

and experts make better and timely decisions. Features extracted 242

from deep CNNs have shown state-of-the-art performance in 243

image retrieval from large datasets due to their impressive repre- 244

sentational capabilities. We used features from FC-4096 layer of 245

the VGG16 model [35] which was trained on ImageNet. These 246

features are regarded as generic descriptors for visual recogni- 247

tion tasks including image classification and retrieval [17], [18]. 248

However, we argue that these features are highly powerful, 249

capable of representing a huge variety of visual data, and a 250

subset of these features will be sufficient to effectively represent 251

images of a particular type like medical radiographs or surveil- 252

lance images of vehicles, etc. In such specific datasets, subsets 253

of these generic features can prove to be more appropriate than 254

the full set of features. For this purpose, we propose an efficient 255

method to select deep features from a pretrained CNN for repre- 256

senting images of a particular type. Deep features from the FC 257

layer are constructed as global representations by combining the 258

local features extracted by various convolutional layers. VGG16 259

contains three FC layers having 4096, 4096, and 1000 neurons, 260

respectively. We used activation values of the second FC-4096 261

layer in our experiments because of their superior performance. 262

Each of these neurons are sensitive to particular objects or parts 263

of objects [36]. When a particular object appears in an image, 264

a subset of these neurons generate high activations indicating 265

its presence. Though these features are considered generic and 266

high level, their high dimensionality hinder their use in practical 267

applications. 268
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B. Optimal Deep Features Selection269

Feature reduction offers improvements in efficiency and ac-270

curacy as it helps in getting rid of the less useful and often mis-271

leading features [37]. We propose an efficient method to select272

optimal features from a pretrained CNN. An input image is usu-273

ally feed-forwarded though a deep CNN (e.g., VGG16) and the274

activation values from the FC-4096 layer are extracted, which275

are then used to index or retrieve images. In hash-based retrieval276

systems, these features are transformed to compact binary codes277

and then images are retrieved using hamming distance. How-278

ever, utilizing all these features for hash code generation and279

retrieving images of specific type is ineffective.280

Deep features from FC layers are global high level features281

where particular neurons are sensitive to particular objects or282

their parts. They respond actively when that particular part ap-283

pears somewhere in the image. For a dataset consisting of a284

particular type of images, e.g., medical, it is highly unlikely285

that object parts belonging to other categories, such as sports,286

surveillance, or animals, may be encountered. In such a case,287

utilizing all the features to represent images become ineffec-288

tive which may lead to decreased performance. In recent works,289

we have seen that fine-tuning pretrained CNNs on particular290

datasets yield better results, which is also a verification of the291

fact that specific features perform better than generic ones [16],292

[38]. Instead of fine-tuning, we propose to discard irrelevant293

features before using them for image retrieval tasks in specific294

datasets. For this purpose, we selected a representative set of295

images from a target dataset and extracted deep features from296

them. We eliminated those neurons which generated negligible297

activations (low sensitivity to objects of interest) or similar acti-298

vations (less discriminative) for the training set. Mean activation299

values μ and standard deviations σ were computed for all 4096300

neurons over the entire training set, where the training set Ts301

consisted of randomly chosen images from all the datasets we302

used in the experiments and were represented by R4096 vectors303

of deep features. Neurons having μi greater than the threshold304

tμ , and σi greater than the threshold tσ were selected as the data305

specific discriminative features in a set Fs. This process can be306

performed for selecting specific features for representing im-307

ages of a particular category. The feature selection mechanism308

is presented in Algorithm 1.309

C. Conversion to Compact Binary Codes310

In this paper, we consider the selected feature vector as a311

one-dimensional signal, and construct its frequency domain312

representation using FFT. During this transformation, the time-313

domain signal is represented as a combination of different fre-314

quencies. These frequencies correspond to the activation pat-315

terns of neurons in the selected feature set. The Fourier spectrum316

effectively captures those patterns and represents them as fre-317

quencies with different amplitudes. The original signal can be318

reconstructed using a certain representative frequencies of this319

spectrum as shown in Fig. 2. Each frequency component will320

indicate the presence or absence of a certain frequency content321

(i.e., neuronal activation pattern) in the features. Based on this322

idea, we select low n frequency components of the spectrum323

(excluding the dc component) and transform them into binary324

Algorithm 1: Selection of optimal deep features.

Input: Training feature vectors Tfi having size T × R4096

extracted from FC-4096 (VGG16)
Output: Indices of selected deep features Fs

Steps:
1. Calculate mean activation values μi and standard

deviation σi for all 4096 neurons across the entire
training set T
For i = 1 to 4096

μi =
T∑

t=1
Tfi

σi =
√∑ T

t = 1 (T fi −μi )
T

End for
2. Keep the neurons whose μi are greater than tμ and

σi is greater than tσ .

Fsi =
{

Select neuron, μi > tμ and σi > tσ
Discard neuron, otherwise

}

where tμ and tσ are selected empirically.
3. Return the indices of selected neurons in Fs .

Algorithm 2: Conversion of deep features to binary codes.

Input: Deep feature vector fi having Rd

Output: n-bit binary code
Steps:

1. Compute FFT of fi in forward direction to obtain a
Fourier spectrum Ff

Ff =
d−1∑

j=0
fie

−i2πkj/n , k = 0, . . . ., d − 1

2. Compute FFT of fi in backward direction to obtain
Fb

Fb =
0∑

j=d−1
fie

−i2πkj/n , k = 0, . . . ., d − 1

3. Compute the sum of Ff and Fb to obtain F.

F = Ff + Fb

4. Calculate the real part of F

F ′ = real(F )
5. Calculate the mean frequency component fm from

F’ without considering the DC component (F’0)

fm = 1
d

d−1∑

i=1
F ′

i

6. Convert the low-n frequencies in F’ to binary codes
H using the fm as a threshold

H =
{

1, F ′
i > fm

0, Otherwise

}

7. Return the n-bit binary code H.

codes as illustrated in Algorithm 2. Frequencies that are less 325

than certain threshold are converted to zero bits and the rest are 326

converted to ones. Though some information is lost during this 327

conversion, the main gist of the spectrum is somehow retained 328

which leads to high performing binary codes. Since each neuron 329

represent a semantic concept (such as object part), a sufficiently 330
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Fig. 2. Reconstruction of features from (a) 64 bits, (b) 256 bits, and
(c) 512 bit hash codes generated using BD-FFT.

strong activation usually refer to the presence of that object part.331

With such high level representation, if the reconstructed signal332

adequately identify the high activation neurons, the code will be333

an effective representation of the original features. The proce-334

dure for conversion of deep features to binary codes is provided335

in Algorithm 2.336

D. Bidirectional Fourier Decomposition337

Though the simple FFT based binary conversion yield strong338

representative codes [39], their quality can be further improved339

with bidirectional FFT. In this case, we compute FFT of the340

features in both forward and backward directions and then add341

the corresponding frequency spectra. The dc component is ig-342

nored and the subsequent n frequency components are binarized343

to obtain the n-bit binary codes. Since the deep features are not344

time-dependent, the bidirectional FFT actually helps capture the345

patterns in neuronal activations more effectively, thereby yield-346

ing better codes. Experimental results revealed that the BD-FFT347

based codes perform much better than the regular FFT based348

codes as reported in the experiments section.349

E. Locality Sensitivity of the Binary Codes350

In LSH, the distance between the original features must cor-351

relate with the distance between the computed binary codes.352

To evaluate locality sensitivity of the proposed binary codes,353

Fig. 3. Locality sensitivity of the proposed binary codes (a) 128 bits,
(b) 256 bits, and (c) 512 bits.

we compared the normalized distances between deep features 354

and their corresponding binary codes. Fig. 3 (a)– (c) reports the 355

correlation among the distances between deep features and their 356

corresponding binary codes. The distances of the query image 357

with the rest of the images are shown on the x- and y-axis using 358

deep features and binary codes, respectively. The red dots cor- 359

respond to the relevant images and the black dots represent the 360

irrelevant images in the dataset. Visualization of the distances 361

reveal that the binary codes strongly correlate with the original 362

deep features, especially for 256 and 512 bit codes, achieving 363

correlation scores of 0.8975 and 0.9447, respectively. Increase 364

in the distance between the original features is appropriately 365

reflected by the distance between the binary codes. The rele- 366

vant images have relatively smaller distances than the irrelevant 367

ones which shows that those images will be retrieved at higher 368

ranks. This characteristic of the proposed binary codes will help 369

it achieve almost similar performance as the deep features. 370

IV. EXPERIMENTS AND RESULTS 371

In this section, we present a detailed evaluation of the pro- 372

posed method on a number of datasets used for benchmarking 373

image retrieval methods. Different experiments were designed 374

to measure performance of the proposed scheme and the effects 375

of deep feature selection. All the experiments were carried out 376

in MATLAB [40] environment on a Windows 7 PC equipped 377

with 16 GB RAM. All the hashing methods were implemented 378

and evaluated in MATLAB. 379

A. Datasets 380

A number of datasets have been used to evaluate retrieval 381

performance of the proposed method, including Corel-10 K, 382

Holiday [41], IRMA-2009 [42], vehicle reidentification (VeRI) 383

dataset [43], and stanford online products (SOP) dataset [44]. 384

Each of these datasets contain thousands of images and are 385

widely used to benchmark CBIR systems. Corel-10 K and 386

Holiday datasets consist a variety of natural images whereas 387
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Fig. 4. Retrieval performance comparison FFT and BD-FFT based
hash codes for (a) 128-bit, (b) 256-bit, and (c) 512-bit hash codes.

IRMA-2009, VeRI, and SOP contain images of particular cat-388

egories including medical radiographs, vehicles, and products,389

respectively.390

B. Retrieval Performance of FFT Versus BD-FFT391

A bidirectional Fourier decomposition of the feature vector392

allowed us to capture patterns in the neuronal activations in a393

much better way. Each bit in the hash code indicate either the394

presence (1-valued bits) or absence (0 valued bits) of activa-395

tion pattern in the original features. With BD-FFT, certain high396

frequency patterns are captured in a much better manner than397

the regular FFT based codes which leads to its superior perfor-398

mance as reported in Fig. 4. The precision scores for various399

datasets have been computed at recall = 0.2. The results reveal400

that BD-FFT yield 3% to 10% better performance in terms of401

precision scores as compared to FFT for all datasets at different402

code lengths.403

C. Retrieval Performance With Hash Codes Using404

Different Subsets of Deep Features405

In these experiments, we evaluated retrieval performance us-406

ing hash codes of different lengths, computed from different407

subsets of deep features. Hash codes of 128, 256, and 512 bits408

were generated for five different sets of features, which con-409

tained 4096, 1816, 1366, 820, and 585 neuronal activations.410

These subsets were obtained by varying the threshold values in411

Algorithm 1. Several images were selected at random from each412

dataset and top ranked images were retrieved using hamming413

distance between the query code and codes in the database. The414

commonly used metrics including precision and recall were used415

to report retrieval performance for each dataset. Fig. 5 shows416

retrieval results in Corel-10 K dataset with 128, 256, and 512417

bit codes for five different subsets of features. For each subset418

of features, the precision-recall curves are presented for hash419

codes of different lengths. In all of these results, the subset with420

1816 activations yield better performance than the other subsets,421

even the full-feature set. The margin is clearly visible in 128-bit422

codes and gradually reduces for 256 and 512 bit hash codes, yet423

Fig. 5. Retrieval performance with hash codes generated from varying
subsets of deep features for Corel-10 K dataset.

Fig. 6. Retrieval performance with hash codes generated from varying
subsets of deep features for holiday dataset.

Fig. 7. Retrieval performance with hash codes generated from varying
subsets of deep features for IRMA-2009 dataset.

it performs better than the other sets of features. Interestingly, 424

the performance of other reduced feature sets remains almost 425

the same as the full feature set, especially at 128 and 256 bit 426

codes. However, the 820 and 586 dimensional features failed to 427

catchup to the performance with other subsets in 512 bit codes. 428

It is important to observe here that performance remains almost 429

unchanged even if significant number of neuronal activations are 430

dropped. In 512 bit code, the scores for 4096, 1816, and 1366 431

features are almost the same. These results reveal the redundant 432

nature of deep features extracted from the FC layer. 433

The same experiments were carried out for Holiday image 434

datasets and the results presented in Fig. 6 reveal similar results 435

as compared to Corel-10 K. Features with 820 and 586 scores 436

slightly lower at 128 bits than the other subsets. However, the 437

performance with 4096, 1816 and 1366 features remains the 438

same for all hash codes. Though we did notice slightly better 439

performance at low recall for 1816 and 1366 subsets, the reduced 440

feature set performed almost the same as the full feature set. The 441

same results were observed with IRMA-2009 dataset as shown 442

in Fig. 7, where the reduced feature sets perform slightly better 443

at low recall and yield similar performance to the full feature 444

set for the rest of recall values with 128 and 256 bit codes. 445

However, with 512 bits, 1816-d, and 1366-d features achieve 446

better precision than the full feature set at all recall settings. 447

The VeRI dataset is quite challenging due to its large 448

volume and diversity. Carefully chosen subsets of features 449

either perform better than the full feature set or yield identical 450
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Fig. 8. Retrieval performance with hash codes generated from varying
subsets of deep features for VeRI dataset.

Fig. 9. Retrieval performance with hash codes generated from varying
subsets of deep features for SOP dataset.

performance. In this dataset, we observed similar performance451

for all subsets with 128 and 256 bit codes. With 512 bit codes,452

820-d, and 586-d features scored slightly lower precision at all453

recall settings as shown in Fig. 8. Finally, same experiments454

were run for the SOP dataset which is the most challenging455

dataset with huge volume and large number of product456

categories. Precision scores dropped significantly when recall457

rates are increased, particularly for 128 bit codes. At this length,458

the hash codes generated for 4096, 1816, and 1366 features459

yield similar retrieval performance, whereas the other subsets460

achieve very low precision scores. With 256 bit codes, all the461

subsets achieve similar precision scores at all recall rates. At462

512 bits, 1816-d, and 1366-d features score almost the same as463

the 4096-d features as presented in Fig. 9.464

With these results, we can conclude that the FC layer features465

are highly redundant and can be substantially reduced without466

any loss in performance. Even in some cases, may get improved467

retrieval results. Through these experiments, we decided to uti-468

lize the selected 1816 neuronal activations from the FC-7 layer469

instead of the 4096 features to generate hash codes for efficient470

image retrieval in large datasets.471

D. Retrieval Performance With State-of-the-Art Hashing472

Schemes473

In this section, we compare the retrieval performance of the474

proposed hash codes with five other schemes including LSH475

[25], [34], SH [28], PCAH [33], DSH [30], and SpH [29]. In476

these experiments, query images were randomly chosen from477

each dataset and top ranked images were retrieved using hash478

codes of 128, 256, and 512 bits. Precision-recall scores are479

reported for each experiment. Fig. 10 presents the retrieval per-480

formance of various hashing methods for Corel-10 K dataset.481

The proposed method performed better than LSH at 128 bits,482

however, it achieved low precision scores compared to other483

methods. At 256 bits, BD-FFT outperformed LSH and PCAH484

at low recalls, and LSH, PCAH, and SH at high recall rates. At485

Fig. 10. Retrieval performance with hash codes compared with state-
of-the-art methods for Corel-10 K dataset.

Fig. 11. Retrieval performance with hash codes compared with state-
of-the-art methods for holiday dataset.

Fig. 12. Retrieval performance with hash codes compared with state-
of-the-art methods for IRMA-2009 dataset.

low recall rates, BD-FFT performed similar to DSH. The per- 486

formance of BD-FFT improved significantly with 512 bit codes 487

where it outperformed LSH and PCAH at low recalls and LSH, 488

PCAH, SH, and SpH at all recall rates above 0.35. 489

In Holiday dataset, BD-FFT performed better than PCAH 490

and SH at 128 and 256 bit codes (see Fig. 11). At 512 bits, 491

it significantly outperformed PCAH, SH, and yielded slightly 492

better precision scores than SpH at most recall settings. How- 493

ever, the performance of LSH and DSH was relatively better 494

for this dataset. In IRMA-2009 dataset, BD-FFT yielded better 495

results than PCAH, SH, DSH, and LSH at 128 bit codes. Only 496

SpH performed slightly better than our method. With 256 bit 497

codes, BD-FFT scored better than PCAH and SH, however it 498

performed slightly poor than the rest of the methods. Increasing 499

the hash code length to 512 bits resulted in much better perfor- 500

mance of our method, surpassing SpH, SH, PCAH, and DSH 501

for recall rates above 0.4 as shown in Fig. 12. 502

In the VeRI dataset, BD-FFT significantly outperformed 503

PCAH, SH, and DSH in all experiments. With 512 bits, it per- 504

formed better than LSH at high recalls and reached the perfor- 505

mance of SpH (see Fig. 13). Similarly in SOP dataset, BD-FFT 506

outperformed PCAH and SH at 128, 256, and 512 bit codes. 507

However the other methods LSH, SpH, and DSH performed 508

much better at low recall rates as shown in Fig. 14. This is the 509

most challenging dataset and that is why its precision scores are 510

much lower than the other datasets. 511
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Fig. 13. Retrieval performance with hash codes compared with state-
of-the-art methods for VeRI dataset.

Fig. 14. Retrieval performance with hash codes compared with state-
of-the-art methods for SOP dataset.

In most of the datasets, BD-FFT outperformed majority of the512

methods, and achieved impressive performance especially with513

256 and 512 bit hash codes. Moreover, the proposed method514

yields more significant performance gains than the other com-515

peting methods when size of the hash code increases. Keeping516

in view the simplicity of our method, these results are very517

promising. From these results, we can conclude that the pro-518

posed method is capable of transforming high dimensional deep519

features to compact binary codes of any length. We recommend520

hash codes of length 256 or 512 bits to be used for image index-521

ing and retrieval in large datasets. Though higher length codes522

can also be generated in the same efficient manner, which may523

yield performance improvements in most cases.524

E. Qualitative Retrieval Performance Using the525

Proposed Hash Codes526

In this experiment, randomly chosen query images were used527

to retrieve top-ranked images from each of the five datasets us-528

ing hash codes generated with the proposed BD-FFT method529

having 512-bit length. Results of two queries have been shown530

for each dataset in terms of top 20 retrieved images in Fig. 15.531

Results reveal that the proposed hash codes is capable of retriev-532

ing relevant images at top ranks despite the huge volume and533

diversity within these datasets, particularly IRMA-2009, Stan-534

ford Online Products, and VeRI. The proposed hash codes can535

effectively represent deep features, allowing almost the same536

retrieval results as the raw features. The top two queries were537

taken from Corel-10 K dataset where all relevant images have538

been retrieved at top ranks. The next two rows contain results539

from Holiday dataset where the first query image had three540

other relevant images in the dataset, which have been success-541

fully retrieved at top ranks. It is important to note here, that the542

rest of the images, though irrelevant, resemble the query image543

in visual appearance. Similar is the case with the other query544

where the images at ranks 1, 2, 3, and 5, have been correctly545

retrieved. The other images are also visually similar to the query546

image. In the third pair of queries, visually similar images have547

Fig. 15. Retrieval results using BD-FFT based 512-bit hash codes.

TABLE I
TRAINING TIME REQUIRED (IN SECONDS) FOR VARIOUS HASHING METHODS

Method Training Time (20000 × 4096 features) 512-bits

LSH 0.03
SH 20.6
PCAH 19.7
DSH 30.2
SpH 252.1
BD-FFT 0.00
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TABLE II
TIME REQUIRED (IN SECONDS) FOR TRANSFORMING FEATURES TO HASH CODES USING VARIOUS METHODS

Method Feature Size

10000 × 4096 20000 × 4096 200000 × 4096

128-bit 256-bit 512-bit 128-bit 256-bit 512-bit 128-bit 256-bit 512-bit

LSH 0.30 0.31 0.40 0.60 0.61 0.62 1.68 2.92 5.50
SH 1.10 4.47 16.18 2.20 8.32 33.3 24.76 84.86 341.9
PCAH 0.07 0.13 0.27 0.16 0.33 0.55 1.53 2.78 5.49
DSH 0.08 0.14 0.29 0.16 0.34 0.59 2.18 3.09 6.2
SpH 0.22 0.33 0.63 0.47 0.71 1.44 0.51 0.98 1.82
BD-FFT (CPU) 0.55 1.2 13.9
BD-FFT (GPU) 0.02 0.041 0.43

TABLE III
STORAGE SPACE REQUIREMENTS FOR 1 MILLION IMAGES WITH DEEP FEATURES AND PROPOSED HASH CODES

Features Storage required (MB) Storage required (GB) Retrieval performance % of original features

Raw (4096 deep features) 31250 30.51758 100
512-bit 61.03516 0.059605 97.02
256-bit 30.51758 0.029802 92.09
128-bit 15.25879 0.014901 86.10
64-bit 7.629395 0.007451 64.25
32-bit 3.814697 0.003725 40.31

been successfully retrieved at top ranks for both queries. The548

last two pairs of queries are from the most challenging datasets549

SOP, and VeRI. Despite the challenging nature and large size550

of these datasets, the proposed codes were able to retrieve the551

relevant images at top ranks. These results show the promis-552

ing performance of the proposed codes. With sufficiently sized553

codes, almost the same retrieval results can be achieved with the554

proposed method.555

F. Efficiency Analysis556

In this section, we evaluate efficiency of the proposed scheme557

in terms of training time, hash code computation time, and558

storage requirements for the varying length hash codes. We aim559

to provide an insight into how efficient the proposed method560

is, compared to other similar approaches. In Table I, we listed561

the training times for various competing methods when 20 000562

features having 4096-dimensions were used for training the563

hashing functions. The training time mentioned in seconds, re-564

veal that the LSH method is the quickest to train and takes only565

0.03 s. The SH and PCAH methods take around 20 s, whereas,566

DSH require 30.2 s. The most computationally expensive567

method was found to be SpH which took 252.1 s to train for568

generating 512-bit hash codes. Though some of these methods569

are quite fast to train, they would require retraining when570

the hash code size gets changed. Further, the data-dependent571

methods like SH and SpH require to be trained each time572

when utilized for a different kind of dataset. Contrary to these573

methods, the proposed method do not require any training and574

can be used to directly transform deep features into binary hash575

codes of any length. Further, using specialized hardware (GPU),576

the proposed method can be executed in parallel, yielding very577

high speeds for transforming features to hash codes. These 578

characteristics make its implementation in real applications 579

very easy. The proposed method can be easily implemented to 580

transform the indexed features to binary codes which would 581

allow efficiently locating similar images using ANN schemes. 582

Table II lists the hash code computation times for varying 583

length codes using deep features. We used three test sets, having 584

10 K, 20 K, and 200 K vectors of 4096-d to evaluate the con- 585

version efficiency. Hash codes of 128, 256, and 512-bits were 586

obtained using different hashing methods and the conversion 587

times were recorded. The average conversion times reported in 588

Table II reveal that majority of the methods including LSH, 589

PCAH, DSH, and SpH are very efficient when shorter length 590

hash codes are generated. The slowest method SH required 591

1.10 s to convert 10 K features to 128-bit hash codes, however 592

it took 341.9 s to convert 200 K features to 512-bit codes. In 593

comparison, most of the hashing methods are more efficient 594

than the proposed method on a CPU, which require 0.55, 1.2, 595

and 13.9 s to convert 10 K, 20 K, and 200 K features into 596

128, 256, and 512 bit hash codes, respectively. However, the 597

advantage of the proposed method over other methods is that 598

it can be easily computed on a GPU which yield significant 599

gains in efficiency, reducing the computation times to 0.0002, 600

0.041, and 0.43 s for 128, 256, and 512-bits, respectively. 601

If the proposed method is implemented on a GPU, it can 602

compute hash codes significantly faster than all the other 603

competing methods. This characteristic also favors our method 604

for implementation in practical applications. 605

In Table III, we show the amount of storage required for 606

1 Million images when the raw features are stored to index 607

images. We also show the amount of storage required to in- 608

dex 1M images with 32, 64, 128, 256, and 512-bit codes. In 609
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addition, we also report the relative image retrieval performance610

to the original deep features for each code. With 32-bit codes, we611

would require only 3.8 MB storage to index the images, however612

we would only get 40.3% retrieval performance. Hash codes613

greater than or equal to 128-bits, yield considerable retrieval614

performance as well as saves storage space. The recommended615

setting is to generate 256 or 512 bit codes for representing im-616

ages because they would respectively yield 92% and 97% rela-617

tive retrieval performance as compared to the original features.618

Further, these hash codes reduce the storage requirements of the619

index file from 30.5 GB to only 30 or 61 MB, which allow them620

to be easily fit into memory. This would significantly improve621

retrieval efficiency for large scale datasets.622

V. CONCLUSION AND FUTURE WORK623

In this paper, we presented an efficient method to directly624

transform deep features into compact hash codes with locality625

sensitivity property. These hash codes allow efficient retrieval626

from large scale datasets utilizing ANN search procedures. The627

proposed hash code conversion method require two steps. First,628

salient deep features are selected using the proposed feature se-629

lection algorithm, which analyzes the deep features and selects630

features with higher diversity than a certain threshold. We an-631

alyzed deep features and found that these features are highly632

redundant and a significant number of these features can be633

ignored without any loss in retrieval performance. Through ex-634

periments, we determined 1816 features out of 4096 to represent635

images. In the second step, we computed the FFT of these se-636

lected features and binarized the top-n frequencies using mean637

frequency as the threshold. The parameter n determined the638

desired length of the hash code. The main idea behind the pro-639

posed method is to represent the selected deep feature as a640

signal and the FFT is used to approximate the feature vector641

in the frequency domain. The computed hash codes have sig-642

nificant representational capability with 128, 256, and 512 bit643

codes, where the 512 bit codes yield almost the same retrieval644

accuracy as the original deep features.645

An essential characteristic of the proposed hashing method is646

that it is completely data-independent and does not require any647

training. Hash codes of any length can be directly computed very648

efficiently. The implementation and operational simplicity of the649

proposed scheme makes it very convenient to be implemented in650

real-world applications. Further, GPU based acceleration of the651

proposed method can substantially improve overall efficiency652

of the retrieval system of large scale datasets. In this work, we653

showed that the proposed method yield comparable performance654

to the state-of-the-art for codes above 256 bits, however its655

performance with smaller codes is relatively weak. Further, the656

proposed method performs well for deep features, however, it657

may not perform well for sparse features and further study is658

needed to improve its performance for any type of features.659

In future, we plan to study the effects of deep features on660

its frequency spectrum and devise more effective ways of661

capturing information in deep features into the compact binary662

representations. Further, we will also evaluate wavelet based663

methods to construct high performance short codes so that the664

retrieval efficiency could be further enhanced.665
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