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Abstract With the growing use of minimally invasive surgi-
cal procedures, endoscopic video archives are growing at a
rapid pace. Efficient access to relevant content in such huge
multimedia archives require compact and discriminative
visual features for indexing and matching. In this paper,
we present an effective method to represent images using
salient convolutional features. Convolutional kernels from
the first layer of a pre-trained convolutional neural network
(CNN) are analyzed and clustered into multiple distinct
groups, based on their sensitivity to colors and textures.
Dominant features detected by each cluster are collected
into a single, layout-preserving feature map using a spatial
maximal activator pooling (SMAP) approach. A moving
window based structured pooling method then captures
spatial layout features and global shape information from
the aggregated feature map to populate feature histograms.
Finally, individual histograms for each cluster are com-
bined into a single comprehensive feature histogram.
Clustering convolutional feature space allow extraction of
color and texture features of varying strengths. Further, the
SMAP approach enable us to select dominant discrimina-
tive features. The proposed features are compact and capa-
ble of conveniently outperforming several existing features
extraction approaches in retrieval and classification tasks
on endoscopy images dataset.
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Introduction

With the advent of minimally invasive surgical procedures
through endoscopy, the volume of images in multimedia da-
tabases at hospitals have grown to unprecedented levels [1].
This ever-growing multimedia big data makes it increasingly
difficult to retrieve relevant information in an efficient and
reliable manner [2]. In recent decades, content based image
retrieval (CBIR) methods have been used to locate relevant
images in large image collections, based on content similarity
of a query image and images stored in the database [3]. This
pair-wise image matching is the core of each CBIR system,
which determines similarity between image pairs based on
their features. Typically, images are represented using their
contents by extracting features from colors, textures, shapes,
and spatial layout. Several methods have been proposed to
effectively model images as feature vectors. However, most
of these methods rely on low-level features extraction which
fail to model high level semantics in images, and are often
plagued with high dimensionality, making indexing and
matching processes highly inefficient [4]. These drawbacks
often restrict their application to large scale data in real
environments.

Traditionally, visual features were algorithmically extract-
ed from images using their color or texture contents, spatial
layout, shape features, or transform domain features [5]. Some
of these methods include color structure descriptor (CSD) [6]
which captures color features and their spatial layout into a
compact histogram. A small window is convolved over the
entire image and the corresponding histogram bins of the
colors appearing in that window are incremented. Another
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approach known as color difference histogram (CDH) [7] en-
codes uniform color difference features by exploiting color
and edge orientations. Liu et al. introduced multi-texton his-
togram (MTH) [8] which attempts to capture texture features
by modeling images as collections of small texture elements
called texton. Features were aggregated into a histograms
which were used to represent color images. This work was
extended by the same authors in [9], who presented micro-
structure descriptor (MSD) which integrates low-level color
and texture features using micro-structures and edge orienta-
tion features. In structure elements descriptor (SED) [10], the
authors used several small patterns which were detected in
images and pooled into histograms to represent images.
Multi-scale local structure patterns (MS-LSP) histogram [11]
approach used multi-scale versions of images and detected 20
distinct patterns at three different scales. The gathered features
were weighted with spatial saliency map and collected in a
feature histogram. Besides these approaches, powerful and
robust features were also developed like scale invariant fea-
tures transform (SIFT) [12] and speeded-up robust features
(SURF) [13] to represent images. These features were later
used in deriving representation schemes like bag-of-visual-
words (BoVW) [14–16] for image retrieval systems. In the
context of medical image representation and classification,
Wang et al. [17] used dual-tree complex wavelet transform
features with twin support vector machine to detect patholog-
ical brain diseases in MRI images. Zhang et al. solved the
same problem using synthetic minority oversampling along
with extreme learning machines [18]. In [19], endoscopic im-
age classification was carried out with local binary patterns
and neural network. Recently, Wang et al. [20] used pseudo
Zernike moments as rotation invariant shape features to detect
Alzheimer disease. All these methods analyze local regions in
images and extract visual features to perform image retrieval
or classification. The main problems associated with CBIR
systems relying on hand-crafted features is ineffective content
modeling, high feature dimensionality, and extraction of irrel-
evant and less useful features. Further, a majority of these
methods construct global representations for images by com-
bining local features without considering spatial layout infor-
mation in an effective manner, which leads to low retrieval
performance. In addition, the hand-crafted color and texture
feature extraction methods only work with the dataset for
which they are designed. It becomes difficult to generalize
these features to be used with other types of images.

In recent years, hand-engineered features have been
overshadowed by learned representations. Thanks to the avail-
ability of huge amounts of data, powerful computing facilities
like GPGPUs, and intelligent algorithms like deep learning
which can automatically learn features from raw data. Deep
convolutional neural networks (CNN) [21, 22], deep
denoising autoencoders (DAE) [23, 24], and Siamese CNNs
[25] have performed significantly well in visual recognition

tasks including object recognition, image retrieval, and image
segmentation [26, 27], etc. Due to their overwhelming perfor-
mance, these hierarchical architectures, particularly CNNs
have attracted significantly large research community, work-
ing in both computer vision, and non-vision domains.
However, they are often used as black box and researchers
are striving to understand their internal representation for uti-
lizing them more effectively for vision-related tasks [28, 29].
Efforts are underway to further advance the performance of
these methods, which require thorough understanding of these
architectures.

In this paper, we study the convolution feature space using
the kernels from the first layer of a pre-trained convolutional
neural network (CNN) known as AlexNet [21] to represent,
classify, and retrieve images from endoscopy image archives.
We attempt to study the characteristics of these kernels and
derive a compact and powerful image representation using
clustered convolutional feature space approach. Further, we
devise a simple method to pool convolutional features com-
pactly, capturing spatial layout characteristics without increas-
ing the feature dimensions. Through experimental evalua-
tions, we show that the proposed method outperforms several
existing state-of-the-art hand-engineered feature extraction
methods on a challenging dataset.

The rest of the paper is organized as: BImage represen-
tation in convolutional feature space^ Section presents the
proposed method and illustrates the features extraction
method using spatial pooling in clustered convolutional
feature space. Experimental evaluations are carried out in
BExperiments and Results^ Section and the paper con-
cludes in BConclusion and future work ^ Section with ad-
vantages and limitations of the proposed scheme and also
provides future research directions.

Image representation in convolutional feature space

Convolutional neural networks have been thoroughly investi-
gated for image retrieval. Usually, the neuronal activations of
the fully connected layers, or dimensionally reduced
convolutional features are known to perform well in image
retrieval systems [30–32]. Activation maps in the convolutional
layers of deep CNNs contain lots of information and utilizing
all the activation values as feature maps yield very high dimen-
sional feature vectors. Further, the deeper layers learns discrim-
inative features regarding images on which the network is
trained. Each neuron in the deeper layers become sensitive to
certain objects of their parts. Though these features are regarded
as generic features, some images (for instance, endoscopy im-
ages) may not contain any object or part which could render the
deeper features less useful. In such cases, the relatively
shallower layers may be more suitable for features extraction
which are more generic than the deeper layer features. In this
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work, we studied the convolutional features from the first
convolutional layer of AlexNet model pre-trained on
ImageNet dataset [21]. This layer consists of 96 kernels of size
11 × 11, and we believe that the 96 feature maps effectively
model visual contents in images. We analyzed the
convolutional feature space using two different characteristics
of kernels including color-sensitivity and texture-sensitivity. A
simple method has been devised to measure the color and tex-
ture sensitivity of convolution kernels using cross channel di-
versity, and channel-wise spatial diversity. Using these two
characteristics of kernels, we attempted to cluster them into
multiple groups. Each group of kernels is separately applied
to the input image to generate feature maps. Spatial maximal
activator pooling strategy [33] is then used to aggregate the
feature maps into a single feature map. The contents of this
feature map are then pooled using an effective structured
pooling method. The derived representation is compact and
possesses high discriminative capabilities. Further details of
the various components in the proposed framework are provid-
ed in the subsequent sections.

Convolutional kernels sensitivity to colors & textures

Convolution kernels of the first layer in AlexNet are known to
model basic color and texture features in images. Computing
their sensitivity to colors and textures can help in understand-
ing the types of features these kernels detect. In this regard, we
present simplemethods to measure the sensitivity of kernels to
colors and textures using the following.

CSi ¼ ∑
m

x¼1
∑
m

y¼1
σ Kx;y;R;Kx;y;G;Kx;y;B
� � ð1Þ

where CS refers to color-sensitivity, calculated as the sum
of standard deviations (σ) computed among the three color
channels (R, G, B) for each coefficient of the kernel, and m
refers to the width and height of the ith kernel K. The standard
deviation between the various channels at particular positions
is a measure of the kernel’s sensitivity to colors. Low score
indicates little presence of color content embedded in the ker-
nel, whereas higher scores mean that greater color content has
been embedded in the particular kernel, making them sensitive
to particular colors. In a similar manner, their sensitivity to
texture can also be measured as:

TSi ¼ ∑
m−1

x¼1
∑
m

y¼1
σ Kx;y;Kxþ1;y
� �þ ∑

m

x¼1
∑
m−1

y¼1
σ Kx;y;Kx;yþ1

� � ð2Þ

where TS indicates texture-sensitivity score computed as
sum of standard deviations (σ) calculated between adjacent
kernel coefficients in vertical and horizontal directions at all
color channels. Procedure defined in (2) is applied on all color
channels of the kernel. High standard deviation between

neighboring coefficients in the kernel at individual channels
reflect their sensitivity to texture, as it refers to high textural
content embedding. Though it is difficult to measure by visual
inspection, the proposed scheme effectively represents them
in the two-dimensional feature space defined over color and
texture sensitivity.

Clustering kernels

Based on the color and texture sensitivity characteristics
of various convolutional kernels, they can be represented
in a two dimensional (2D) feature space. It will allow us
to visualize them and then study their characteristics in a
more effective manner. Fig. 1 represents the kernels in the
2D feature space with varying number of clusters. Fig. 1a
shows the distribution of various kernels based on their
CS and TS scores. It can be seen that some kernels have
high color sensitivity, whereas, others have high texture
sensitivity and very low color sensitivity. Using this in-
formation, we have clustered them into 2, 3, and 4 clus-
ters as shown in Fig. 1b–d. By grouping them into two
clusters, we get two sets of kernels. One set of kernels
have very high texture sensitivity (indicated by red dots)
and the other set have high color sensitivity as indicated
in blue color in Fig. 1b. However, it can be noticed that
the red group contains several kernels which have low
texture sensitivity and high color sensitivity. Hence, two
clusters do not effectively group them into meaningful
sets. Similar is the case with 4 clusters as shown in Fig.
1d where the clusters look mixed up. For three clusters,
we get three well defined sets of kernels, one of which
include kernels having high texture sensitivity (red). The
other group of kernels (magenta) consist of kernels with
both low color and texture sensitivities. The third cluster
(blue) consist of kernels having high color sensitivity and
relatively less texture sensitivity. The three sets of kernels
have been presented in Fig. 2. It is interesting to note the
similarity in their characteristics in each individual clus-
ter. For instance, the first set consist of 24 kernels having
high TS scores with no colors. They resemble the Gabor
filters often used for texture representation [34]. The sec-
ond set consist of 41 kernels with low TS and CS scores
and can be observed the presence of both color and tex-
ture content. Similarly, the last set consist of 31 kernels,
which have high CS scores and the smooth rich color
content can be clearly seen. Applying these kernels at
once and then recording the maximum activations may
not effectively capture salient features. Convolving with
individual sets of kernels will allow us to capture more
fine-grained features for effective image representation.
The clustered feature maps are then analyzed separately
for distinctive features.
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Spatial maximal activator pooling

Feature maps effectively model visual contents in CNNs which
are further analyzed by higher layers for global/contextual fea-
tures. In the current scenario, we aim to utilize the feature maps
for deriving a compact, discriminative representation. Each in-
put image is resized to 64 × 64 spatial dimensions, which is then
convolved with stride 1 and replicate padding to avoid reducing
dimensions. We separately convolve the input image with each
set of kernels to obtain separate sets of feature maps as shown in
Fig. 3. Each set of feature map contain a lot of useful and

possibly redundant information about the input image.
However, if we use all the values in the feature maps, we will
get a very high dimensional representation. In order to effec-
tively use the information in these feature maps, we used a
spatial maximal activator pooling strategy where we construct-
ed a single feature map known as spatial maximal activator
(SMA) map from each set of feature maps. Instead of the acti-
vation value in the feature maps, we collected the information
regarding the kernel generating maximum activation values at
each pixel position across all feature maps as shown in Fig. 4.
For instance, if we convolve the input with four kernels, we will

b

c d

a

Fig. 1 Clusters in convolutional
feature space, (a) convolutional
feature space corresponding to
color and texture sensitivity, (b)
two clusters, (c) three clusters, (d)
four clusters

a b c
Fig. 2 Clustered Kernels (a) Cluster-1: High texture sensitivity (b) Cluster-2: Low color & texture sensitivity, (c) Cluster-3: High color sensitivity
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get four feature maps. The maximal activator value for the red
color channel is determined by identifying the kernel which
produced maximum value at the first pixel position across red
color channel in all feature maps. The same scheme is repeated
for all positions and color channels in the SMA map. It conve-
niently selects the most prominent features while preserving
their spatial layout information which can be analyzed further.

Structured pooling of features

The SMA map contain important information about the in-
put image. However, it still is very high dimensional and

needs to be reduced. Further, we also need to capture the
spatial layout of these features in order to form a discrim-
inative global representation. Typical spatial pooling ap-
proaches collect localized features from non-overlapping
or partially overlapping regions and then combine them to
form a high dimensional feature vector, or they simply use
max pooling or average pooling approaches. Contrary to
these, we propose a structured pooling approach similar to
the one described in color structure descriptor (CSD) [6]
which captures layout information while keeping the fea-
ture dimension unchanged. However, instead of colors,
we pool information regarding kernels from the SMA
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Cluster-1

Feature Maps

Spa�al Maximal Ac�vator Map-1
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Image
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Feature Maps
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Fig. 3 Clustered convolutional feature space
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Fig. 4 Spatial Maximal Activator Pooling approach
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map into a feature histogram as shown in Fig. 5. A 9 × 9
window is convolved over the entire SMA map in order to
capture layout structure characteristics of features. The
various histogram bins corresponding to particular kernels
which appear within this window are incremented. This
process is repeated for every pixel position in all color
channels. Kernel co-occurrences are effectively measured
in this scheme as the kernels which appear together most
of the time will get incremented a lot. In this way, a
compact feature histogram is populated for each SMA
map. The number of bins in this histogram is equal to
the number of kernels in that particular cluster. This struc-
tured pooling offers several advantages over other similar
approaches including, capturing of global shape informa-
tion and feature co-occurrences, without increasing fea-
ture dimensionality.

Compact image representation

Spatial pooling of all the SMA maps will yield individual
feature histograms containing features of colors and textures.
These histograms are concatenated to obtain a final feature
histogram which is used to represent images in the proposed
CBIR system. The number of bins in the final histogram is
equal to the number of kernels in the first convolutional layer
of AlexNet model, i.e. 96. This 96 bin histogram contains
information regarding the color and texture contents of images
as well as their spatial relationship. The derivation of final
feature histogram is depicted in Fig. 6. For pair-wise image
matching, it is important to have discriminative capability in
the extracted features. The proposed features contain suffi-
cient discriminative ability which will eventually yield better
performance at image retrieval.

Kernel Bin

+1

+1

…

+1
9 × 9 Neighborhood Pool

Fig. 5 Structured Pooling of
Convolutional Features

SMA M-1

SMA M-2

SMA M-3

Spa�al Feature 
Pooling

Spa�al Feature 
Pooling

Spa�al Feature 
Pooling

Concatenate Feature 
Histograms

Fig. 6 Compact image representation with proposed features
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Experiments and results

This section presents the various experiments conducted to
evaluate the various performance aspects of proposed scheme
on two popular datasets. Details of datasets and discussions on
results are provided in the following sections.

Datasets

We used an annotated endoscopy images dataset (Kvasir [35])
for evaluating image classification and retrieval performance. It
consists of 4000 images, which have been annotated and verified
by experienced endoscopists. The images have been grouped
into 8 different classes based on anatomical landmarks, patho-
logical findings, or endoscopic procedures. Each class consists of
500 images having different resolutions ranging from 720 × 576
to 1920 × 1072 pixels. Several experiments were designed and
executed to assess the classification and retrieval performance
based on the proposed features. All the experiments were con-
ducted in MATLAB 2016. Details of the experiments and the
results are provided in the subsequent sections.

Endoscopic image classification in kvasir dataset

The extracted features were used to represent endoscopy im-
ages to train various classifiers including Naïve Bayes,

Random Forest, and Support Vector Machine (SVM). A 10-
fold cross validation strategy was used to perform the classi-
fication. During each experiment with individual classifiers,
we randomly chose 90% of the data and used it for training the
classifier. The remaining was used to test the classifier’s per-
formance. This process was repeated 10 times, each time with
a different training and test set. Results of the various classi-
fiers based on the proposed 96 features (indicated as 96 F) and
other approaches has been provided in Table 1. Results in the
first four rows were taken from the work presented in [35],
where they used 2 and 6 global features (GF) with Random
Forest classifiers to classify endoscopy images in the Kvasir
dataset. The other two methods used a 3 layer and a 6 layer
CNN to perform the classification. We used the 96 features
with Naïve Bayes and achieved 0.64 precision, 0.643 recall,
and 0.638 F-measure, which are slightly better than the 3 layer
CNN. Similarly, with Random Forest classifiers, we achieved
0.672 F-measure, which is better than the 6 layer CNN. We
achieved the best classification results (0.753 F-measure) with
SVM classifier using a linear kernel.

Table 2 lists per-class recognition rates using SVM classifier
[36] in the form of a confusion matrix. Labels mentioned at the
top of the table correspond to the predicted labels generated by
the classifier, whereas the labels at the right of the table repre-
sent the ground truth. Each value in the diagonal of the table
indicates the percentage accuracy. The other values represent
the confusion or incorrect classification. In the category
BPolyps^, 71.8% images were correctly classified by the pro-
posed classification approach. However, 14% of these images
were incorrectly classified as Bulcerative-colitis^, 8.6% were
misclassified as Bnormal-cecum^, and small number of images
were misclassified as other categories. Most of the images in
Besophagitis^were correctly classified (68.8%) and a large por-
tion of these images were mislabeled as Bnormal-z-line^. In the
third category Bdyed-lifted-polyps^, the classifier achieved
61.4% accuracy. However, 35.8% of these images were
misclassified as Bdyed-resection-margins^ because of the simi-
lar appearance. Similar performance and misclassification was

Table 1 Classification performance comparison on Kvasir dataset

Method Precision Recall F-measure AUC

2 GF + Random Forest [35] 0.713 0.715 0.711 0.952

6 GF + Random Forest [35] 0.732 0.732 0.727 0.954

3 Layer CNN [35] 0.589 0.408 0.453 0.796

6 Layer CNN [35] 0.661 0.640 0.651 0.942

96 Features + Naïve Bayes 0.64 0.643 0.638 0.940

96 Features + Random Forest 0.673 0.673 0.672 0.948

96 Features + SVM (Proposed) 0.754 0.755 0.753 0.956

Table 2 Per-category classification performance in Kvasir dataset

Predicted Class

polyps esophagitis dyed-lifted-
polyps

normal-
pylorus

ulcerative-
colitis

dyed-resection-
margins

normal-
cecum

normal-z-
line

71.8 0.4 1 4.2 14 0 8.6 0 polyps Actual
Class0 68.8 0 2.6 0 0.2 0 28.4 esophagitis

2 0 61.4 0 0.8 35.8 0 0 dyed-lifted-polyps

0.4 1.6 0 95 0.4 0 0 2.6 normal-pylorus

16 0 0.4 1.6 73.6 0.4 7.8 0.2 ulcerative-colitis

1 0 36 0 0 63 0 0 dyed-resection-margins

7 0 0 0 2.6 0 90.4 0 normal-cecum

0 18.6 0 1.6 0.2 0 0 79.6 normal-z-line
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noticed in Bdyed-resection-margins^ category as well. BNormal
Pylorus^ images were classified with the highest accuracy of
95%. Images from the category BUlcerative Colitis^ were clas-
sified with 73.6% accuracy, with some degree of confusion
with BPolyps^ and BNormal-cecum^. The Bnormal-cecum^
and Bnormal-z-line^ categories were classified with accuracies
90.4% and 79.6%, respectively.

Endoscopic image retrieval in kvasir dataset

During these experiments, query images were randomly cho-
sen from each category and top N images were retrieved using
the proposed 96 features. Some visual retrieval results for four

different queries have been shown in Fig. 7 where the upper
left most image is the query image and the remaining are the
top 25 retrieved images. For each of these queries, our system
was able to retrieve visually similar images at top ranks. Each
of these queries, belong to distinct image categories, and the
retrieval results indicate that the proposed features possess
significant representational capability involving color, texture,
local shape and layout features. To acquire quantitative per-
formance scores, we executed different queries from each cat-
egory and obtained retrieval scores in the form of precision for
scopes ranging from 10 to 200. Scope represents the number
of images retrieved during a particular query. Twenty images
were randomly chosen from each category and top 200 images

a b

c d
Fig. 7 Retrieval Results for Kvasir dataset
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were retrieved. Each time, the precision scores were computed
for various scope values. The final scores from each category
were obtained after averaging the scores of twenty queries.

Figure 8 show quantitative results for various categories
defined in the dataset. Figure 8a reports precision scores for
various scope ranges in the three distinct categories defined as
anatomical landmarks. Retrieval performance of the Bnormal-
pylorus^ is better than the other two categories at scopes be-
low 150. Its performance is significantly higher than the other
categories for scope up to 100. Its performance decreases at a
regular pace after scope increases from 125. Images in
Bnormal-cecum^ category were retrieved with better scores
for all scopes than the Bnormal-z-line^ category, and showed
relatively stable performance across all scopes. The retrieval
performance for Bnormal-z-line^was relatively poor, especial-
ly when scope was increased from 50. Overall, precision
scores for all these categories were above 80% for scopes up
to 50. Figure 8b shows precision scores for three pathological
categories including esophagitis, polyps, and ulcerative coli-
tis. At scope 10, esophagitis and ulcerative colitis had similar

precision scores, however, the score for polyps was signifi-
cantly lower. When the scope was increased, ulcerative-colitis
showed a much drastic decrease in performance as compared
to the other two categories, whose performance decreased
gracefully. For scope up to 50, the precision scores for all these
categories was above 60%. Figure 8c shows retrieval results
for two remaining categories, which indicate that both these
categories perform poorly when the scope is increased from
10. Although, in general, retrieval systems usually desire for
better precision scores at low scope, retrieval performance in
these categories need to be improved. Figure 8d shows the
overall retrieval performance across all categories. For top-
10 retrieval, the proposed features yield more than 82% pre-
cision. The performance degrades gracefully with increase in
scope. At 200, it achieves around 61% precision.

Effect of number of kernel clusters

In this experiment, we tested the effects of varying the number
of clusters on image retrieval performance. Four different
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Fig. 8 Per category precision for varying scope in (a) anatomical landmarks, (b) pathological categories, (c) polyp removal, and (d) overall
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experiments were conducted with different number of clus-
ters. During the first experiment, we tested retrieval without
any clustering of kernels. At this setting, the proposed method
treats both texture and color features together and selects only
prominent features irrespective of the fact that a point in image
may contain both texture and color features of significant im-
portance. Therefore, the retrieval performance with this setting
is quite low, as can be seen in Fig. 9. By increasing the number
of clusters to two, the retrieval performance got significantly
improved for all scopes. This improvement is particularly at-
tributed to the fact that color and texture features are now
treated separately, and the texture content in images is effec-
tively represented with this setting. The performance got fur-
ther improved with three clusters because this setting provides
a much better grouping of kernels as discussed in BClustering
Kernels^ Section. Retrieval scores improved significantly at
scope 10 and scope beyond 50. By further increasing the
number of clusters, slight performance improvement was no-
ticed. However, the overall performance with 3 clusters was
the optimum. These results reveal the importance in clustering
in the convolutional feature space. The first layer kernels
detect basic color and texture features of generic nature. A
particular kernel may be sensitive to colors or textures or
both. Understanding their sensitivity to colors and textures
would allow us to represent the features in more effective
ways. With three clusters, we were able to extract dominant
color and texture features with those kernels which have
high sensitivities. The third cluster consisted of those ker-
nels which are slightly sensitive to both. This separation
also allows us to assign weights to features, depending on
the requirements of the dataset. Further, we can also ignore
certain kernels when particular features are absent in a
dataset. For instance, we can ignore color sensitive kernels
when dealing with grayscale images. Further analysis
along these lines can reveal the effectiveness of proposed
approach which will be performed in future.

Effect of spatial pooling

The SMA maps contain both color and texture features at
specific locations where they exist in the input image. An
effective pooling strategy can accumulate these features into
compact feature histograms. For this purpose, we
experimented with different strategies to populate histograms,
including max, average, and structured pooling. In max
pooling, the maximum values across feature maps were gath-
ered to form feature vector. Average pooling used average
values of feature maps instead of maximum to populate the
histogram. The proposed structured pooling used the window
based approach to collect features from SMA map. One ex-
periment was carried out to assess retrieval performance using
a simple approach where features were pooled into the respec-
tive bins without regard to their spatial location from the SMA
map. With this setting, the features lost some of its discrimi-
native strength and achieved high degree of invariance.
Feature histograms were invariant to geometric transforma-
tions, however, the retrieval score was relatively low. In the
second experiment, we used the structured pooling strategy to
form the global image representation. With this strategy the
precision scores improved significantly as shown in Fig. 10.
Similarly, feature map-wisemax and average pooling schemes
were separately tested which yielded lower precision scores
than the SMAP based approaches, particularly with higher
scopes. Average pooling offered better precision than max
pooling scheme.

Retrieval performance comparison with existing feature
extraction methods

Several existing features extraction methods were used to re-
trieve endoscopy images in Kvasir dataset. Randomly chosen
query images were used to retrieve top 50 images for each
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feature set. Precision scores computed at scope 50 have been
reported in Table 3. Features extraction methods including
SED and MS-LSP take into account local color and texture
features, their scores were close to the proposed method.
Other approaches like CDH, MTH, DSD, and MSD also take
into account local color and texture features, however they
exhibited less discriminatory capabilities for endoscopy im-
ages. The proposed method achieved 74.02 precision at scope
50, which shows the effectiveness of the method in
representing endoscopy images.

Conclusion and future work

In this paper, we studied the convolutional kernels from the
first convolutional layer of AlexNet model. We showed that
the kernels can effectively model visual contents by capturing
color and texture features. The characteristics of these kernels
were studied using two measures, color-sensitivity and tex-
ture-sensitivity. These two measures were used to analyze
the convolutional feature space created by these kernels in
the deep CNN. We found that the kernels vary significantly
in their sensitivities to colors and textures. Some of the kernels
had significantly higher color-sensitivity whereas others have
higher sensitivities to textures. Based on these observations,
we clustered the convolutional feature space into three distinct
clusters. Each of these clusters contain a number of kernels
having similar characteristics. These individual sets of kernels
were used to extract color and texture features separately from
the input image and then aggregate those features into a single
feature map called spatial maximal activator map. The fea-
tures in these maps were collected into a histogram in such a
way that their spatial layout information is also captured with-
out increasing the dimensions of the features, using a struc-
tured pooling approach. Experiments revealed that the pro-
posed method provides superior retrieval performance on en-
doscopy images dataset.

We also conducted experiments with other pooling ap-
proaches including map-wise max pooling and average
pooling. However, their retrieval performance was significant-
ly lower than the proposed SMAP based pooling. Though the
first layer kernels are known to extract basic features,

combining them into a global representation is a key factor
in transforming them into useful representations. The pro-
posed clustered convolutional feature space along with spatial
maximal activator pooling approach allowed us to capture
salient color and texture features separately. Further, the struc-
tured pooling approach enabled us to construct a discrimina-
tive global representation. We strongly believe, that the pro-
posed method can be used in representing medical images
with high color and texture content, effectively in CBIR sys-
tems. The framework can be further enhancedwith more com-
plicated pooling approaches and investigating other character-
istics to analyze the kernels. In future, we plan to extend this
framework to other deeper layers of the CNNs and attempt to
model visual contents in compact feature histograms.
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