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Large scale visual surveillance generates huge volumes of data at a rapid pace, giving rise to massive
image repositories. Efficient and reliable access to relevant data in these ever growing databases is
a highly challenging task due to the complex nature of surveillance objects. Furthermore, inter-class
visual similarity between vehicles requires extraction of fine-grained and highly discriminative features.
In recent years, features from deep convolutional neural networks (CNN) have exhibited state-of-the-
art performance in image retrieval. However, these features have been used without regard to their
sensitivity to objects of a particular class. In this paper, we propose an object-oriented feature selection
mechanism for deep convolutional features from a pre-trained CNN. Convolutional feature maps from
a deep layer are selected based on the analysis of their responses to surveillance objects. The selected
features serve to represent semantic features of surveillance objects and their parts with minimal
influence of the background, effectively eliminating the need for background removal procedure prior to
features extraction. Layer-wise mean activations from the selected features maps form the discriminative
descriptor for each object. These object-oriented convolutional features (OOCF) are then projected onto
low-dimensional hamming space using locality sensitive hashing approaches. The resulting compact
binary hash codes allow efficient retrieval within large scale datasets. Results on five challenging datasets
reveal that OOCF achieves better precision and recall than the full feature set for objects with varying
backgrounds.
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1. Introduction image retrieval (CBIR) systems attempt to locate images containing
objects similar to that of a query image by analyzing their contents.
CBIR has several applications in information retrieval, surveillance,
medical, e-commerce, industry, and social web. Recently, it has
attracted a lot of attention due to the rising interest in making
the best use of available multimedia data [3]. The exponential
increase in the volume of image data, and the inherent complexity

of visual contents (projecting 3D world onto a 2D canvas) has

In recent years, we have seen tremendous increase in the
production and consumption of multimedia data partly due to
advent of the social web and partly because of the progress in
surveillance, medical, industrial, mobile and embedded computing
technologies [ 1]. Consequently, multimedia data including images
and videos are produced and stored in huge amounts. These mul-
timedia repositories contain wealth of highly useful information

for administrators and decision makers, provided that efficient
and reliable access to relevant data is ensured [2]. Content-based
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made image retrieval increasingly difficult. This difficulty increases
even further with fine-grained image retrieval due to the existence
of high degree inter-class visual similarity [4]. One such problem
arises when retrieving images from traffic surveillance datasets,
where the main object of interest are vehicles [5,6]. There exists
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greater visual similarity despite the fact that vehicles may belong
to different categories.

Visual surveillance has become an undeniable necessity of the
day, producing huge amounts of multimedia data, which is stored
for future analysis [7,8]. Indexing and retrieval of such huge vol-
umes of data requires efficient representation methods [9,10].
Though there exists numerous ways to represent visual con-
tents in large datasets, complexity in the nature of visual data
in surveillance limits the use of traditional image representation
schemes. Earlier image retrieval methods used local features like
scale-invariant features transform (SIFT) [11] and other feature
aggregation schemes like vectors of locally aggregated descriptors
(VLAD)[12] and fisher vectors (FV)[13]. In recent years, the success
of CNN based features prevailed as the state-of-the-art features
for image retrieval and classification. Some of the earlier works by
Babenko and Lempitsky [ 14] and Razavian et al. [ 15] showed that
features from a pre-trained CNN can be used to represent images,
yielding state-of-the-art performance in large datasets. However,
these approaches directly used activations from various layers
without considering the suitability of these features for particular
object classes.

In this paper, we investigated convolutional features maps of
a pre-trained deep CNN to identify a set of optimal features for
representing surveillance objects like vehicles for image retrieval
applications. A feature selection procedure is presented for ve-
hicles, allowing us to select appropriate features for fine-grained
image search. Main contributions of our work are as follows:

a. Convolutional activation features have been investigated for
vehicles in order to select appropriate features for their
effective representation.

b. An efficient feature selection procedure is presented
through which it is shown that the number of feature maps
can be considerably reduced without any degradation in
performance. The selected features exhibit greater attention
to the object of interest than the background.

c. It has also been shown through experiments that the se-
lected features yield better retrieval performance at higher
ranks than the full set of features.

The rest of the paper is organized as: Section 2 introduces
relevant literature in the field of image retrieval. Section 3 presents
schematics of the proposed approach. Experimental results are
discussed in Section 4 and the paper is concluded with future
research directions in Section 5.

2. Related work

Content-based image retrieval has been extensively investi-
gated by the multimedia research community for more than two
decades [16,17]. CBIR systems attempt to retrieve images based
on visual content similarity, which require image representation
as an essential ingredient [18,19]. Traditionally, hand-engineered
methods including bag-of-words histograms based on SIFT de-
scriptors [20,21], VLAD [12], GIST [22], and CENTRIST [23], etc.
were used to represent images in retrieval systems. In recent
years, image descriptors based on activations generated by deep
CNNs have substantially improved the state-of-the art for visual
recognition [14,24,25]. Several methods were recently proposed
for image retrieval which used activations of the fully connected
(FC) layers as global descriptors. These methods provided much
superior performance than the traditional hand-crafted features.
However, directly matching these features in the Euclidean space is
inefficient [26]. More recently, researchers found that the features
from deep convolutional layers are more useful and naturally in-
terpretable than the features from FC layers [27]. Each activation in
the convolution layer is analogous to a local feature corresponding

to a local receptive field. Furthermore, spatial layout of these local
features is also preserved in convolutional feature maps, which
makes them more useful for tasks like object detection and local-
ization.

Deep features from the FC layers are like features from a black
box which cannot be naturally interpreted [15]. On the contrary,
convolutional layers contain volumes of information which needs
to be effectively pooled to construct a global representation. Raza-
vian et al. [15] showed that activations from a pre-trained CNN
can be used as generic features for a variety of tasks including ob-
ject recognition, localization, and image retrieval. Gong et al. [28]
utilized a multi-scale order-less pooling approach to aggregate
CNN activations with VLAD based encoding. In [29], the authors
aggregated features from the last convolutional layer through
global max pooling and achieved better retrieval performance than
several deep features based methods. Babenko and Lempitsky [25]
showed that aggregating these features using global sum pooling
yields better results than max pooling. Comor et al. [30] compared
various global pooling approaches for image retrieval and showed
that cross-dimensional weighting approach yielded better results
with object-heavy datasets, whereas sum pooling performed the
best for scene-based datasets.

Traditional image retrieval systems mainly focused on category-
level image retrieval where a black car, red car, or a white sports
car were considered as the same. However, in fine-grained image
retrieval, the CBIR systems need to look deeper and rely on highly
discriminative features in order to be able to differentiate between
images belonging to the same category [31-33]. Fewer works have
been carried out to investigate fine-grained image search. Wang
et al. [32] presented a deep ranking method to learn similarity
between images. However, their method relied on labeled sets of
triplets which required considerable human efforts in annotation.
Wei et al. [4] recently proposed selective convolutional descriptor
aggregation approach where they utilized selected activations
from convolutional layers and pooled those features through aver-
age and max pooling. Firstly they eliminated features correspond-
ing to the background and then aggregated the selected descriptors
to form a global representation. They showed state-of-the-art
performance on several fine-grained image datasets. Our work is
based on the findings in [4], however, instead of eliminating some
convolutional activations from all the feature maps, we eliminate
selective feature maps based on their negligible role in visual
representation of the objects within a single category (in this case,
vehicles). Based on our observations, we found that convolutional
features from a pre-trained CNN model can serve as generic local
descriptors for image retrieval which pay attention to particular
regions in images. However, for a certain type of objects, all the
features may not be equally important. Hence, we studied the role
of convolutional feature maps in describing vehicles and found that
only a subset of these maps were sufficient to represent vehicle
images in surveillance datasets.

In large scale datasets, like surveillance, efficient indexing and
retrieval methods are required [34]. In this context, locality sen-
sitive hashing based approaches have been successfully applied
to the domain of image retrieval [9]. Two different categories of
methods exist: data independent methods like locality sensitive
hashing (LSH) [35], spectral hashing (SH) [36], spherical hashing
(SpH) [37], density sensitive hashing (DSH) [38], multi-feature
hashing (MFH) [39], Kernelized LSH (KLSH) [40,41], Iterative Quan-
tization (ITQ) [42], Product Quantization (PQ) [43], Compact Quan-
tization (CQ) [44], scalable graph hashing (SGH) [45], and sparse
embedding and least variance encoding (SELVE) [46] etc., whereas
learning-based methods including Deep Hashing (DH) [47], si-
multaneous feature learning and hashing [48], and deep seman-
tic ranking based hashing [49], etc. Each of these methods have
some strengths and limitations. For instance, LSH uses random
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projections to generate large number of hash tables in order to
achieve considerable precision and recall, thereby requiring a lot
of memory and time. DSH avoids purely random projections by
utilizing geometric structure of the data, which helps it achieve
better performance. KLSH generalizes LSH to the kernel space,
however, its training is computationally expensive. SH is fast to
train but conversion of features to binary codes requires a lot of
time. SpH, on the other hand, requires a lot of time for training.
All these methods perform well with image features and have
exhibited state-of-the-art performances in large datasets. How-
ever, the representative strength of hash codes depends on the
discriminative strength of the original features. Hashing methods
attempt to project high dimensional feature vectors onto low-
dimensional hamming space where feature vectors of relevant im-
ages are placed near to each other such that approximate nearest
neighbor search (ANN) approaches can efficiently access relevant
data. We have investigated several hashing approaches to show the
suitability of proposed features for large scale retrieval.

3. Proposed method

In this section, we present the object-oriented convolutional
features (OOCF) approach for fine-grained image search in large
scale datasets. The proposed method consists of a feature selec-
tion process which attempts to identify appropriate features for
representing objects of a particular class, based on feature atten-
tion. Then, the selected features are globally pooled to index and
retrieve images. The method can be effectively applied to any type
of images. Details of the feature selection, extraction, indexing and
retrieval processes are provided in the subsequent sections.

3.1. Analysis of convolutional feature maps

Convolutional layers in a deep CNN constitute an integral com-
ponent of the feature learning pipeline. These layers learn pro-
gressively complex features of images with varying sizes of recep-
tive fields. The shallower layers only look at small neighborhoods
which merely contain primitive features, whereas the deeper lay-
ers have relatively larger receptive fields and hence are able to
model high level semantics. Activations from the deeper convolu-
tional layers and the fully connected (FC) layers have been widely
used to retrieve images, yielding state-of-the-art performance in
image retrieval. Recently, it has been shown that features from
the convolution layers are more powerful and robust than the FC
layer features [27]. A number of studies have been conducted to
efficiently utilize convolutional features for image retrieval.

At each convolution layer, there exists a number of feature maps
formed as a result of convolution operations on the input images.
The number of feature maps depends on the number of kernels
applied at a certain layer. Given an input image I having size H
x W, the output of a convolution layer is a tensor T having h
x w xd activations, where d corresponds the number of kernels
at the layer, h and w represent height and width of the feature
maps. The dimensions of the feature maps decrease as we move
deeper in the CNN because of the strided convolutions and pooling
operations.

In this study, we investigated output of the “pool6” layer of a
VGG-16 model [50] pre-trained on ImageNet dataset [51] having
6 x 6 x 512 dimensions. The deepest convolution layer has the
largest receptive field, thereby making each feature map sensitive
of particular objects or parts of objects. Recently, Zhou et al. [52]
showed that these feature maps or combinations of feature maps
can be used to detect objects in images. Based on their results,
we formed the basis of our study to determine optimal maps for
convolutional features extraction of particular object sets. During

this study, we analyzed the outputs of pool6 layer of the pre-
trained model in vehicles dataset, and found that a large number
of feature maps produce very weak activations or no activations
at all. For instance, the feature maps shown in Fig. 1 reveal that
some feature maps have strong activations at particular parts of
the vehicles (even rows in Fig. 1), whereas others do not have any
activations (odd rows). Though the model was trained on a huge
dataset containing diverse images, the feature maps are sensitive
to parts of vehicles which can be seen in the even numbered
rows in Fig. 1. For different vehicles, the particular feature maps,
produce stronger activations at the same object parts. Based on
these observations, the proposed algorithm selects appropriate
feature maps for a particular set of objects, which we call OOCF.
The feature selection algorithm and its schematics are discussed in
the following section.

3.2. Object oriented features selection

Selection of appropriate convolutional features serves two im-
portant objectives. Firstly, it will allow us to utilize effective and
discriminative features for object representation by eliminating
irrelevant features. Secondly, the elimination of irrelevant features
will result in reduction of the influence of the background in image
representation process. As is evident from the feature maps in
Figs. 1 and 2 that the strong activations are produced at parts of the
objects rather than the background. Convolutional features with
attention to objects of interest or their parts are more suited to
represent images than those which may be sensitive to irrelevant
objects or the background. The proposed feature selection algo-
rithm is provided in Algorithm 1. We used training images from
the vehicle re-identification (VeRI) dataset [53] which contains
more than 37K images of vehicles captured by surveillance cam-
eras, to perform the feature selection for vehicles. This dataset is
suitable for feature selection because it contains cropped images
of vehicles, thereby restricting the influence of background on the
extracted features. Convolutional activations (6 x 6 x 512 x M)
from pool6 were generated for the M training images. Layer-wise
mean activations for all the 512 feature maps were computed for
M training images and stored. Afterwards, null activation values
were identified and marked with 1 to construct a null utilization
index (NUI) map as shown in Fig. 1(b). The dark blue columns
correspond to the feature maps with non-null activations, whereas
the yellow columns indicate those feature maps which generated
no activations for the training images. Columns in the NUI maps
can be seen which reflect upon our observation that significant
number of feature maps can be eliminated without any degra-
dation in performance. We then computed percentage frequen-
cies for all the feature maps in the NUI map. At the end, feature
maps with frequencies less than the threshold t were selected.
This algorithm effectively eliminates those feature maps which
do not react strongly or produce null activations for majority of
the images. Remaining feature maps exhibited strong attention to
semantic object parts, even in the presence of background objects.
Responses of twenty selected feature maps on two images with
full background are shown in Fig. 2. The sensitivity of selected
feature maps to particular object parts is evident from the stronger
activations in Fig. 2. Furthermore, minimal response can be seen
for the background which effectively limit its role in the image
representation process. Output of a single feature map (473) for
eight different images is provided in Fig. 3. This map appears to be
sensitive to upper part of the vehicle area where it has produced
stronger activations. The mean activation value of the feature map
is shown on top of each feature map in these figures.
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Fig. 1. (a) Sample responses of deep convolutional features (b) null utilization index (NUI) map. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 3. Single feature response on multiple images (feature map #473).

3.3. Object oriented convolutional features

The proposed feature selection algorithm attempts to isolate
feature maps which respond strongly to vehicles or parts of ve-
hicles and produce negligible activations for other objects which
may appear in the background. In this way, it minimizes the effects
of background features when describing the objects of interest
using convolutional features. It is evident from the feature maps
shown in Fig. 3 where they responded strongly to parts of vehicles
and produced negligible activations at the background. The given
maps in Fig. 3 show responses of a single feature map (map #
473) on eight different images. The proposed features extraction
framework illustrated in Fig. 4, can serve in fine-grained image
classification and retrieval applications.

The input image is forward propagated through the VGG-16
pre-trained CNN. Feature maps from the pool6 layer (6 x 6 x
512) are extracted. The selected feature maps, identified through
Algorithm 1, are isolated and their layer-wise global mean is com-
puted. Each global mean represents the strength of response of

a particular feature map for the input image. The combination of
global layer-wise mean values for the selected feature maps result
in the OOCF vector. For large scale retrieval, this feature vector can
be projected into low-dimensional hamming space with locality
sensitive hashing. Details of this transformation are provided in the
subsequent section.

3.4. Transformation of OOCF to compact hash code

Hashing is a widely used approach for ANN search, which aims
to transform high-dimensional feature vectors to low-dimensional
hamming space. The resultant representation consists of a short
sequence of binary digits, known as hash code. There exists two
major categories of procedures for this transformation: locality
sensitive hashing (LSH) or learning based hashing. The LSH meth-
ods are data independent and can be effectively applied to trans-
form any feature vector to hash code, with locality sensitivity
property. These approaches aim to map the query item to the
target items in hamming space, allowing relevant items to be
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Algorithm 1: Feature Map Selection

Input:
Training Image Set (75)
Output
Selected Feature Maps (Fs)
Preparation:
1. Initialize the VGG16-CNN
2. Initialize Null Utilization Indices (NUI) having size length(TS) x Fy to 0.
Steps:
1. for each training image 7Si in 7S
a. Forward propagate 7'Si through VGG16-CNN
b. Extract & x w x Fy feature maps from layer “pool6”
c. Compute global mean Fmi of each feature map Fi to obtain Fy values
d. Locate feature maps whose Fmi = 0.
e. Mark their indices with 1 in the NUI for 7i
end for
2. Compute frequencies of null activations FREQ NA; for each Fi
3. Compute percentages of frequencies P FREQ NAi for each Fi
4. Return all Fi as Fs whose P_FREQ NAi<t
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Fig. 4. Proposed features extraction framework.

accessed efficiently and accurately using ANN search schemes.
These characteristics of LSH techniques allow faster searching in
big data by directly accessing areas of the feature space where
potential relevant items could be found, thereby eliminating the
need to exhaustively search the entire database. In our work, we
evaluated six different schemes including DSH, SpH, MFH, SELVE,
ITQ, and SGH. All of these data-independent methods aim to derive
short binary representations for high dimensional features. The
discriminative strength of hash codes is directly related to the dis-
criminative capability of original features. The OOCF features will
yield better retrieval performance if it is more discriminative than

the full feature set. Hash-based image retrieval can be formulated
as:
Given the query OOCF vector geR? and the set of N d-

dimensional vectors in the database D € R*™N D = {f;, o, ..., fu},
a set of hash functions H can be employed H = {hy, hy, ..., hi} to
compute a K-bit code Hy = {y1, ¥2, . .., ¥k} for q such that

Hy = {hi(q), ha(q), - . ., he(q)} (M

where kth bit is computed as y, = hy(q). Each hash function
performs the mapping as hy : R? — B. This kind of encoding
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Fig. 6. Precision-recall rates for varying subsets of selected features (VeRI dataset).

corresponds to mapping the original data point to a binary valued
hamming space.

H:q —> {hi(q), ha(q), ..., hi(q)} (2)

Given the set of hash functions, all data points in the database
D = {f1, f>, ..., fa} can be transformed to binary codes as:

Hy = H(D) = {m(f), ha(f). . ... hi(f)} (3)

where the hash codes for D will be YeR *¥, the value of k corre-
sponds to the number of hash functions applied on the data points
or the length of the hash code. Typical hash code lengths range
from 16-bits to 512-bits, depending on the type of image data being
represented with these codes. Once the hash codes are computed,
ANN search can be performed by computing hamming distance dy
between codes H; and Hy as:

K
dy(Hg. Hy) = |Hy — H| = Z |hi(Hq) — hi(Hy )| (4)
k=1

The objective of locality sensitive hash codes is to compute
codes H for both g and f, such that the hamming distance between
q and f strongly correlates with the hamming distance between H,
and H;. If the Euclidean distance between g and f is large, then their
hamming distance must also be large and vice versa. This char-
acteristic will allow us to search relevant items in the hamming
space without exhaustively searching the whole dataset. The hash
code for g will lead us to a location in the hamming space where
the probability of relevant items will be the highest. We will then
retrieve the nearest neighbors and rank them according to their
hamming distances from the query. Items with smaller distances
will appear at higher ranks and those with larger distances will be
placed at lower ranks. In big data, such a scheme can dramatically
reduce search space and improve efficiency considerably [9].

4. Experiments and results
The aim of this study was to develop a procedure to se-

lect appropriate features for representing objects of interest for
fine-grained image search. We chose vehicle images captured by
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surveillance cameras to evaluate the proposed scheme. We also
experimented with recent hashing methods to determine appro-
priateness of the proposed features for transforming them into
compact binary codes. Results of various experiments and their
outcomes are thoroughly discussed in this section.

4.1. Datasets and evaluation metrics

We evaluated the proposed method on three vehicles datasets
namely Vehicle Re-Identification (VeRI) [53], Weizmann Cars
ViewPoint (WCVP) [54], and Stanford Cars dataset [55]. The VeRI
dataset consists of 51,035 images of cropped vehicles captured
from surveillance cameras. The entire dataset is split into training

and test sets such that 37,778 images are used for training and
11,579 images are used for testing. The remaining 1678 images
are used as query images. We used the training images of this
dataset to select appropriate features for vehicles, and used the
query images to measure retrieval performance in the test set. The
second dataset, WCVP consists of 1464 images captured from 22
different cars. Cars in this dataset are not cropped and the dataset
was used to evaluate retrieval performance of the selected features.
This dataset was used because we wanted to analyze whether the
selected OOCF limits the role of background in the overall image
representation process. The third dataset Stanford Cars contains
16,185 images, captured from 196 different cars. We used the
entire dataset to test retrieval performance of the OOCF features
which were selected using images from VeRI dataset.

Besides these datasets, we also evaluated retrieval performance
using two other fine-grained datasets namely Aircraft [56] and
Flowers [57]. The Aircrafts dataset consists of 10,200 images corre-
sponding to 102 different aircraft models. Results of experiments
are provided in the subsequent sections. The Flowers dataset con-
sists of 1360 images corresponding to 17 different flower species.
Both of these datasets contain background in significant amounts
and the proposed method can be effectively used to extract fea-
tures from the object of interest with little influence of the back-
ground.

Retrieval performance of the proposed method was measured
in terms of precision (P), and recall (R) scores which are computed
as:

__ Number of Relevant images retrieved

Total number of images retrieved
Number of Relevant images retrieved

(5)

(6)

" Total Number of relevant images in the dataset

4.2. Results on VeRI dataset

VeRI dataset consists of a test set having 11,559 images and
a query set of 1678 images. To obtain performance scores on
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Fig. 9. Retrieval results in Stanford Cars dataset.
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Fig. 10. Precision-recall rates for varying subsets of selected features (WCVP
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this dataset, we ran queries for all the images in the query set
and retrieved top-k images using the proposed OOCF. We found
that OOCF, despite having low dimensionality outperforms the full
feature set, especially at higher ranks. This performance boost can
be attributed to the selection of appropriate features for image

representation, which eliminate the role of image background.
Hence, the proposed features are able to effectively represent im-
ages even with different backgrounds as the chosen features focus
only on the objects of interest. Results of randomly selected queries
are shownin Fig. 5, where the first image is the query image and the
remaining are top retrieved images using the proposed features.
In the first query, our method retrieved accurately at top ranks,
however some irrelevant, yet visually similar images were also re-
trieved at ranks 7-10, and 13-15. Likewise, some incorrect images
were retrieved for 7th and 8th query due to visual similarity in
colors and shapes. For the second and last two queries, the system
was able to retrieve images with high precision, despite the fact
that visually similar images of other vehicles were also present in
the test set. Similarly, better performance was noticed for the rest
of the queries where relevant images were retrieved accurately at
top ranks, despite slight view variations, occlusions and different
backgrounds. Quantitative results presented in Fig. 6 also exhibit
superiority of the OOCF compared to the full convolutional features
of the same layer. Itis interesting to note that the proposed features
yield better precision at lower recall rates but performs slightly
poorly at very high recall rates. Since, typical CBIR systems seldom
require all relevant images to be retrieved in response to a query.
High precision at top ranks is usually favored over high precision
at lower ranks.

In Fig. 6, real values in the legend correspond to the value of t
used to select features in Algorithm 1, and the values inside brack-
ets show the number of selected feature maps for the particular
value of t. Choosing t =0.01, only 123 highly reactive convolutional
features maps are selected. However, effective representation of
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Fig. 11. Retrieval performance for hash codes generated using full feature set and OOCF for VeRI dataset.

the vehicles is not achieved which leads to poor retrieval perfor-
mance. Increasing value of t to 0.05, 230 feature maps were se-
lected. With these features, significant improvement was noticed
in the retrieval performance at all recall rates. Further increase in
the number of features had little effect on performance. Best results
were obtained for t = 0.1 where 267 feature maps were used
to represent images. At this setting, slightly better precision rates
were achieved for recall up to 0.4, as compared to other subsets
of features. However, it performed relatively poor at high recall. If
sufficient features are selected for representing a particular type of
object, the irrelevant features can be safely removed. At the same
time, retrieval performance can be improved for low recall because
of highly focused features used for object representation.

4.3. Results on WCVP dataset

This dataset is relatively smaller but more challenging than
the VeRI dataset due to the presence of a variety of backgrounds.
Images are captured from different viewpoints and the vehicles
are not cropped due to which different background objects appear
in images. Despite the differences in backgrounds, the proposed
features successfully retrieved relevant images at top ranks. For
instance as we move down the image ranks at first query, we notice
the change in the background, yet the proposed method correctly
retrieved them. Similar is the case with other queries, particularly,
3rd, 6th, and 9th query. Fig. 7 shows results of 10 random queries
with top ranked images. Though some images were incorrectly
retrieved at lower ranks, visual similarity of those images to the
query image can be noticed which reflects upon the discriminative
ability of the proposed features.

Similar to the qualitative results in VeRI dataset, the proposed
features exhibit better precision for lower ranks as compared to the
full set of convolutional features, shown in Fig. 8. It is important
to highlight, that the improvement achieved with the optimal
feature set is significantly higher than the previous dataset. This
is because the presence of background in this dataset acts as a
distractor in the object representation process. In the VeRI dataset,
test images are also segmented images of vehicles with very little
background. On the contrary, images in WCVP dataset contain
significant background, providing much better set of images for
proving effectiveness of the proposed features. When the full set of
features is used to represent these images, features corresponding
to the background result in retrieval of irrelevant images at top
ranks. Instead, when the optimal subset of features are used, the
influence of the background is significantly reduced, and preci-
sion at higher ranks improves. Results for both datasets show
that once sufficient number of features are selected to represent
objects, the rest of the features can be safely discarded without
any drastic change in performance, particularly at higher recall
rates.

4.4. Results on Stanford Cars dataset

This dataset is the most challenging one, partly due to the huge
volume of images and partly due to the high degree of viewpoint
variations with which the images were taken. This is not primarily
asurveillance dataset, rather the images were collected to evaluate
fine-grained recognition tasks. Given a query image, the objective
is toretrieve images of the same model car irrespective of the view-
point variations, and changes in colors or textures etc. The images
in this dataset were taken with varying backgrounds which make
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Fig. 12. Retrieval performance for hash codes generated using full feature set and OOCF for WCVP dataset.

it a fine candidate for evaluating the suitability of our method.
We extracted OOCF features from these images and used them to
retrieve top ranked images. The objective was to retrieve as many
relevant images as possible. Fig. 9 contains results of 10 randomly
chosen query images, where the left most image is the query and
the remaining are top ranked images based on L2 distance between
the query and the dataset images. The images enclosed within red
boxes indicate incorrect retrieval. In the first query, the proposed
system retrieved accurately at ranks 3 and 7, irrespective of the fact
that there is a high degree of variation in viewpoints and colors.
Similarly, in query 2, top 5 images have been retrieved correctly.
In the third query, relevant images were retrieved at ranks 2, 4,
5, 6, and 8, despite the fact that there exists huge disparity in
their backgrounds. In the rest of the queries, relevant images were
retrieved at top ranks which exhibit the capabilities of proposed
features. Though the results on this dataset are not very strong, we
believe that if a more powerful CNN model is used, these results
can be significantly improved. Fig. 10 presents the precision-recall
scores for Stanford Cars dataset using varying subsets of features.
Like the previous two datasets, the best results were achieved in
this dataset with 267 features.

4.5. Large scale image retrieval with hash codes based on OOCF

In these experiments, we evaluated the suitability of proposed
features to be transformed to compact binary codes for large scale
image retrieval using ANN search techniques. We used six different
methods to derive hash codes of varying lengths for the proposed
features. Precision-recall scores were computed for each code and
compared with the hash codes computed for the various subsets

of features. Based on the parameter t in Algorithm 1, we selected
seven distinct sets of features and computed hash codes of various
lengths so that their performance could be compared with the hash
codes generated by all the features. As witnessed in the previous
experiments, eliminating 10 to 15% percent feature maps had
absolutely no effect on retrieval performance. However, decreasing
the number of features even further results in better performance
at top ranks. It is interesting to note that this improvement appears
only when a certain percentage of feature maps are eliminated.
It is because the feature maps corresponding to the background
have been eliminated and that the chosen features effectively
model only the object features. Keeping in view these outcomes,
we recommend at least 50% of features to be selected so that
effective representation for objects of interest could be achieved.
We evaluated retrieval performance for code lengths 16, 32, 64,
128, and 256. However, 16, 32, and 64 bit codes could not achieve
reasonable performance. Best retrieval rates were obtained for
the optimal subset of features (at t = 0.1) with 128 bit hash
codes for both datasets. A further increase in code length resulted
in negligible improvements, therefore, we used 128-bits in these
experiments. Retrieval performance for OOCF and full feature set
with 128-bit hash codes generated using the different methods is
provided in Figs. 11-13 for VeRI, WCVP, and Stanford Cars datasets,
respectively.

Fig. 11 shows precision-recall scores for VeRI dataset with 128-
bit hash codes generated using six different methods. In the pre-
vious experiments with these datasets, where OOCF features were
used to retrieve images in this dataset, we see little improvements
with OOCF as compared to the full feature set. Similar results have
been achieved in these experiments as well. In DSH and SELVE
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Fig. 13. Retrieval performance for hash codes generated using full feature set and OOCF for Stanford Cars dataset.

methods, OOCF performs slightly better than the full feature set,
whereas in other approaches, the performance is either similar
or slightly poor. Negligible performance improvements in these
results reflect the fact that the images in VeRI dataset were seg-
mented and contained very little background. Hence, there exists
no significant room for improvement for the OOCF. In Fig. 12,
however, much better precision-recall scores have been achieved
with OOCF in the WCVP dataset. This is due to the presence of back-
ground in this dataset, which allows OOCF to perform much better
than the full feature set. OOCF yields better performance with SpH,
DSH, SGH, SELVE and ITQ. In MFH, its performance remains the
same for low recalls, however, its performance drops slightly at
higher recalls. Similar kinds of results were achieved with Stan-
ford Cars dataset (Fig. 13), where OOCF outperforms full feature
set with SpH, DSH, MFH, SGH, and ITQ. With SELVE, it performs
either similar scores or slightly lower scores. However, with ma-
jority of these methods, OOCF achieves better precision and recall
scores, when there exists significant amounts of background in the
images.

4.6. Performance of OOCF on other fine-grained retrieval datasets

In these experiments, we used two famous datasets for fine-
grained image retrieval namely Aircraft and Flowers. The objective
of these experiments, is to assess the capability of OOCF for object
representation in general. Here, two different sets of objects were
represented using OOCF and their retrieval performance was as-
sessed using several hash-based retrieval algorithms. The Aircraft
dataset is highly challenging due to the similar structure, and
colors of the aircrafts. Even if the background is eliminated, it
is very difficult to capture fine-grained discriminative features.

On the contrary, the Flowers dataset is relatively easier because
the difference among species of flowers can be relatively easily
identified. For each of these datasets, we used a small portion of
the dataset to select optimal features for representation using the
proposed algorithm. The remaining images were used to retrieve
similar images. For the Aircraft dataset, we merely used 10% of the
dataset for feature selection, which amounts to 1020 images. The
bounding boxes of the selected images were used to detect object
oriented feature maps using Algorithm 1. We sett = 0.15 to obtain
284 features. In the remaining images, we retrieved top ranked
images as shown in Fig. 14(a), where the left most query image
was used to retrieve the remaining images. Despite the highly chal-
lenging nature of this dataset, we were able to retrieve significant
number of relevant images at top ranks. In the Flowers dataset, we
segmented the flowers by eliminating the backgrounds containing
leaves, and ground. The segmented flower images were used in the
feature selection phase. For flowers, we obtained optimal set of 228
features by setting the value of t in Algorithm 1 to 0.2. Fig. 14(b)
contains results of top ranked images in Flowers dataset, where
the proposed features accurately retrieved relevant images at top
ranks. Only one image in the last query was incorrectly retrieved
at the last rank. The visible differences in the different flower
species make retrieval in this dataset relatively easy. However, the
similarity in background can affect retrieval performance if it is not
effectively avoided.

Quantitative results depicted in Fig. 15 show that the proposed
OOCF yield better retrieval scores than the full feature set on the
Aircraft dataset. ITQ and MFH achieved the highest scores in terms
of both precision and recall, whereas, SGH and SELVE achieved
lowest scores on this dataset. With SpH, DSH, MFH, SGH, and
ITQ, OOCF achieve relatively better scores than the full feature
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Fig. 14. Retrieval results in (a) Aircraft and (b) Flowers dataset.

set. Similar results can be seen in Fig. 16 where OOCF achieves
better performance with DSH, MFH, and ITQ, particularly at top
ranks. These results vindicate the superiority of OOCF features for
object based image representation in fine-grained image search
applications. Identifying reactive convolutional features to objects
of interest improves image representation which eventually leads
to superior overall retrieval performance.

4.7. OOCF sensitivity to target objects

In this section, we evaluated the proposed OOCF for detecting
target objects (vehicles and aircrafts) in the presence of other
objects or background. Since, convolutional feature maps preserve
the spatial locations of detected features in images, the selected
features (OOCF) can be used to detect and localize the objects
of interest in images. In these experiments, we tested the OOCF
for localization of vehicles in images other than the ones we

used in the previous experiments. We also show that the selected
feature maps can be utilized to detect any object of interest.
Fig. 17 shows sample test images from the VOC2007 dataset [58]
and their corresponding activations of the selected feature maps
on those images. The activation maps for each image has been
obtained by taking the mean of the selected activation values
at each pixel location. Further, these maps have been resized to
fit the size of the input image, so that the position of object
can be identified. The activation maps overlayed on each image
show that the OOCF features can effectively represent objects of
interest, keeping them under focus. Such attention based features
extraction has helped us achieve better results in the previous
experiments. Fig. 17(a) shows activations on vehicle images in the
presence of various backgrounds as well as other objects. We used
the VeRI dataset to select the feature maps for vehicles using the
proposed algorithm. The selected feature maps were successful in
detecting their locations in the images despite the variations in
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Fig. 15. Retrieval performance for hash codes generated using full feature set and OOCF for Aircraft dataset.

their scales. Vehicles with smaller sizes, partially occluded, and
with viewpoint variations have been successfully detected. For
aircrafts, we used some images from the Aircrafts dataset to select
feature maps. Their responses on sample images are shown in
Fig. 17(b). Like the vehicles, the aircrafts have been successfully de-
tected even in the presence of complex backgrounds. These results
indicate that the proposed feature selection method effectively
selects feature maps by analyzing their attention to our objects of
interest.

5. Conclusions and future work

In this paper, we presented an efficient feature selection
method of convolutional feature maps for a particular object
category. The selected features focus on the objects of interest
in the presence of background, eliminating the need to remove
background prior to features extraction. We experimented on
large surveillance datasets containing vehicle images captured
by surveillance cameras, and two other datasets. Analysis of the
convolutional feature maps on segmented vehicles images re-
vealed that a small subset of feature maps can adequately rep-
resent the vehicles. Some of the feature maps contained no ac-
tivations whereas others produced negligible activations, which
the proposed method attempted to eliminate. As a result, only
those features are selected which discriminatively represent the
objects of interest. Furthermore, the effect of background on the
extracted features is also significantly reduced. We conducted
several experiments to evaluate performance on vehicles and other
datasets and showed that the selected features improve retrieval
performance at higher ranks, particularly when optimal subset of

features is selected. Furthermore, we also showed that the se-
lected features can be effectively transformed into compact binary
hash codes to allow efficient retrieval of images in large scale
datasets.

In this study, the proposed method has been applied to vehi-
cles, flowers, and aircrafts datasets, however, we strongly believe
that the method can be easily applied to any fine-grained image
recognition task. The only weakness of the current method is the
requirement of segmented objects for the training set, which may
not be always available for all datasets. Further research needs to
be carried out to automatically select appropriate feature maps
without requiring segmented objects of interest. One possibility
is to employ visual saliency methods to identify object of interest
and then use that information to isolate the foreground from
background during the training process.

In future, we aim to improve the feature selection mecha-
nism by considering more parameters through deeper analysis
of the convolutional feature maps. Furthermore, we also intend
to extract optimal features for object detection and localization,
tracking, and representation of images having multiple objects.
Currently, we focused on images with a single object. In future,
we will try to extend the framework for multiple objects per
image.
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