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Abstract—Tactile Internet can combine multiple technologies 

by enabling intelligence via mobile edge computing and data 

transmission over a 5G network. Recently, several convolutional 

neural networks (CNN) based methods via edge intelligence are 

utilized for fire detection in certain environment with reasonable 

accuracy and running time. However, these methods fail to detect 

fire in uncertain IoT environment having smoke, fog, and snow. 

Furthermore, achieving good accuracy with reduced running time 

and model size is challenging for resource constrained devices. 

Therefore, in this paper, we propose an efficient CNN based 

system for fire detection in videos captured in uncertain 

surveillance scenarios. Our approach uses light-weight deep 

neural networks with no dense fully connected layers, making it 

computationally inexpensive. Experiments are conducted on 

benchmark fire datasets and the results reveal the better 

performance of our approach compared to state-of-the-art. 

Considering the accuracy, false alarms, size, and running time of 

our system, we believe that it is a suitable candidate for fire 

detection in uncertain IoT environment for mobile and embedded 

vision applications during surveillance.  

 
Index Terms—CNNs, Embedded Vision, 5G, Fire Detection, 

MobileNet, Disaster Management, Tactile Internet, Image 

Classification, Surveillance, Uncertain IoT Environment 

I. INTRODUCTION 

HE connectivity of billions of smart devices have resulted 

in internet of things (IoT) and the maturity of installed 

sensors is ready for the emergence of Tactile Internet 

(TI), which have several useful applications for e-health, 

smarter surveillance, law enforcement, and disaster 

management [1-7]. In smart surveillance, edge intelligence 

plays an important role in security and disaster management. 

The instant reporting of unusual situations such as disaster in 

surveillance is very necessary for quick actions. The recent 

employed approach for instant transmission of such alarming 

information is 5G TI networks. Disaster management is mainly 

based on smoke/fire detection which can be performed using 

mobile edge computing. The main causes of fire are human 

mistakes or systems failure, which endangers human lives and 

properties. The statistics presented in [8] shows that wildfire 

disaster alone made an overall damage of 3.1 billion USD in 

2015. Furthermore, in Europe 10,000 km2 of area of vegetation 

is affected by fire disasters every year. To detect fire, 

researchers have presented both traditional and learned 

representation based fire detection methods. In literature, the 

traditional methods use either color or motion characteristics 

for fire detection. For instance, [9-16] used color features for 

fire detection by exploring different color models including HSI 

[12], YUV [13], YCbCr [14], RGB [15], and YUC [9]. The 

major issue with these methods is their high rate of false alarms. 

Several attempts have been made to solve this issue by combing 

the color information with motion and analyses of fire’s shape 

and other characteristics [17-20]. However, maintaining a well-

agreed trade-off between the accuracy, false alarms, and 

computational efficiency still remained a challenge. In addition, 

several methods from this domain fail to detect fire at a larger 

distance or small amount of fire. 

 To cope with these issues, recently convolutional neural 

networks (CNN) are explored for fire detection using edge 

intelligence. For instance, Frizzi et al., [21] presented a CNN 

based method for fire and smoke detection. Their work is based 

on a limited number of images and having no comparison with 

existing methods that could prove its performance. Sharma et 

al., [22] explored VGG16 and Resnet50 for fire detection. Their 

dataset is very small (651 images only) and the reported testing 

accuracy is less than 93%. Their work is compared with [21] 

with testing accuracy of 50%. Muhammad et al., [23] presented 

a CNN based early fire detection method for surveillance 

networks using two benchmark datasets. They also nominated 

a prioritization mechanism for cameras in a specific 

surveillance setup and explored cognitive radio networks-

assisted channel selection approach for reliable data 

transmission. The main issue with this work is the huge size of 

model (238 MB), making its deployment restricted for resource 

constrained devices. In another work [24], a reasonable trade-

off was maintained between the fire detection accuracy and 

false alarms rate, keeping the model size reasonable. A more 

efficient CNN based approach for both fire detection and 

localization was devised in [25] with model size of 3 MB, 

reasonable accuracy, and false alarm rate. 

 The aforementioned CNN based approaches are applicable 

to only certain environment with limited performance in 

uncertain surveillance environment. In addition, deploying 

huge-sized models on resource constrained devices is expensive 

and not recommended for surveillance networks. Furthermore, 

the fire detection accuracy and false alarm rate still need 

improvement, considering the critical nature of fire detection 

systems for disaster management. These issues are resolved in 

the current work with the following major contributions: 
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1. We propose an efficient CNN based method for fire 

detection in videos captured in uncertain surveillance 

environment. Our method dominates the state-of-the-art in 

terms of accuracy and rate of false alarms.  

2. Our method uses light-weight deep neural networks with 

no dense fully connected layers, making it 

computationally inexpensive. This favors our method for 

adaptation in surveillance networks with constrained 

resources in general and 5G TI-enabled surveillance in 

particular. 

3.  Our method results in an inference model of reasonable 

size (approximately 13 MB), which is easily deployable 

on mobile devices with embedded vision. We believe that 

our method is superior compared to state-of-the-art as 

verified from experiments and a suitable candidate for 

integration with disaster management systems. 

4. The literature contains benchmark fire detection datasets 

for certain environment, however, there is no benchmark 

dataset specially created for uncertain surveillance 

environment. We created a dataset, consisting of synthetic 

fire images with fog and real fire foggy images. The 

dataset will be publically available for research 

community to mature fire detection algorithms for 

uncertain environment.  

The rest of this paper is structured as follows. We disclose 

our method in Section 2 with its experimental validation in 

Section 3. Finally, we conclude this paper in Section 4 with key 

findings and several future directions for research community. 

II. THE PROPOSED FRAMEWORK  

The time-consuming efforts of features engineering makes 

fire detection a tedious job especially when the surveillance 

environment is uncertain with snow, fog, and smoke etc., or the 

fire is very small in size or at a long distance. In such situations, 

generally, the traditional fire detection systems produce a 

significant number of false alarms with limited fire detection 

accuracy. Recently, CNN based approaches are also explored 

for fire detection but their running time, size, and limited 

performance in several challenging situations (shadows, fire-

like objects, uncertain scenes with smoke, snow, and fog etc.), 

make them infeasible for resource-constrained surveillance 

networks. Considering these challenges, we propose an 

efficient CNN based method for fire detection in videos 

captured in uncertain environment. To keep our method 

computationally inexpensive and effective for small-sized fire 

at a larger distance, we use light-weight deep neural networks 

with no dense fully connected layers. Our system is detailed in 

Fig. 1.  

A. CNN based Fire Detection  

Literature shows that CNNs have achieved state-of-the-art 

performance for many real-world and challenging problems 

such as image classification, object detection and recognition 

[26], action and activity recognition [27, 28], segmentation, 

localization, image reconstruction, authentication [29], 

prioritization, indexing [30], and retrieval [31, 32]. The 

underlying factor behind this success is their hierarchical 

architecture consisting of convolution, pooling, and fully 

connected layers via which they automatically learn rich 

features from raw data. A convolution layer results in large 

number of feature maps from which high activations are 

selected by a pooling layer for dimensionality reduction and 

translation invariance. A fully connected layer learns high-level 

information needed for the target classification problem. In case 

of fire detection, a CNN architecture is usually changed such 

that the final fully connected layer has two classes i.e., fire and 

non-fire. The input fire data is provided to the intended CNN 

for training during which the weights of a large number of 

neurons are adjusted and learnt for classification into fire and 

non-fire.  

B. Details of the Proposed Architecture for Fire Detection 

The research community agrees that CNNs can automatically 

learn rich and discriminative features from raw data. However, 

much effort is needed to obtain the optimal setting, considering 

results through evaluation metrics, the amount of available data 

and its quality, and the problem under consideration. We 

explored different CNNs with different parameter settings for 

fire detection considering both certain and uncertain scenarios. 

After extensive experimentations, we found MobileNet version 

(V2) better than other models such as AlexNet [33], GoogleNet 

[34], and SqueezeNet [35]. Thus, we use a model with similar 

architecture to MobileNet [36] and modify it according to fire 

detection problem in uncertain surveillance environment. 

Similar to AlexNet, SqueezeNet, and GoogleNet, the baseline 

MobileNet is trained on ImageNet dataset for classification of 

objects into 1000 classes. Since MobileNet learns much rich 

features than other CNN models, thus we focused on re-using 

its learned features for accurate fire detection. To this end, we 

kept the number of neurons to two instead of 1000 in the final 

layer of our architecture, enabling classification into fire and 

non-fire. The architecture of MobileNet (V2) is modified by 

adding an expansion layer to the main building block. The 

modified block is given in Fig. 2. To this end, we kept the 

number of neurons to two instead of 1000 in the final layer of 

our architecture, enabling classification into fire and non-fire. 

The architecture of MobileNet (V2) is modified by adding an 

expansion layer to the main building block. The modified block 

is given in Fig. 2. 

The expansion layer expands the number of channels in the 

input data before it is passed to the next layer of depthwise 

convolution. The amount of expansion can be controlled by the 

expansion factor, which is 6 by default. The second layer 

depthwise convolution filters the input while the projection 

layer makes the number of channels smaller. Each layer is also 

followed by a batch normalization with activation function 

“ReLU6”. ReLU 6 is employed due to its robustness when used 

with low-precision computation. The projection layer is not 

followed by any activation function because its output is low-

dimensional data and such activation function can affects the 

useful information. Overall, the employed architecture has 17 

blocks similar to Fig. 2, followed by a 1x1 convolution and the 

classification pipeline given in Fig. 1. For getting inference on 

an input image, it is passed through the proposed architecture 

given in Fig. 1, which outputs two probabilities. The highest 

probability indicates the final label of the input image as given 

in Fig. 3 for several sample images. 
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Fig. 1: Efficient deep CNN for fire detection in videos captured in uncertain environment. (a), (b), and (c): video stream from foggy surveillance. (d) video 

frames of surveillance from snowy scenes. (e) video stream with smoke and fire. 

 
Fig. 2: Main building block of MobileNet V2 architecture 

 

The expansion layer expands the number of channels in the 

input data before it is passed to the next layer of depthwise 

convolution. The amount of expansion can be controlled by the 

expansion factor, which is 6 by default. The second layer 

depthwise convolution filters the input while the projection 

layer makes the number of channels smaller. Each layer is also 

followed by a batch normalization with activation function 

“ReLU6”. ReLU 6 is employed due to its robustness when used 

with low-precision computation. The projection layer is not 

followed by any activation function because its output is low-

dimensional data and such activation function can affects the 

useful information. Overall, the employed architecture has 17 

blocks similar to Fig. 2, followed by a 1x1 convolution and the 

classification pipeline given in Fig. 1. For getting inference on 

an input image, it is passed through the proposed architecture 

given in Fig. 1, which outputs two probabilities. The highest 

probability indicates the final label of the input image as given 

in Fig. 3 for several sample images. 

C. Motivations of using MobileNet (V2) for Fire Detection 

Model selection is a critical step especially in resource 

constrained environment and for applications of critical nature 

such as disaster management where minor delay can result in 

huge loss in terms of humanity and economy. Compared to 

other CNN models, we use MobileNet due to its higher 

feasibility for memory and bandwidth-restricted hardware 

architectures such as FPGAs, smart sensors, and raspberry Pi 

and its suitability to 5G TI-enabled surveillance. The 

motivation of using MobileNet (V2) [36] compared to 

MobileNet version 1 (V1) [37] is its reduced size both in terms 

of number of computations and learned parameters with 

comparable accuracy. The statistics of both versions are given 

in Table I. 
TABLE I 

COMPARATIVE STATISTICS OF BOTH VERSIONS OF MOBILENET 

Parameters MobileNet 
V1_1.0_224 

MobileNet 
V2_1.0_224 

MACs (millions) 569 300 

Parameters (millions) 4.24 3.47 

Top-1 Accuracy (%) 70.9 71.8 

Top-5 Accuracy (%) 89.9 91.0 

 

Here “1.0” shows the version number of MobileNet V2 while 

“MAC” refers to multiply-accumulate operations, measuring 

the number of calculations required for getting inference on an 

image of size 224×224×3 pixels. Based on this metric, V2 is 

two times faster than V1. Besides this, memory access is also 

important and quite slower than computation on mobile devices. 

To this end, V2 has quite less number of parameters compared 

to V1. Finally, V2 performs better than V1 in terms of image 

classification accuracy on ImageNet dataset. These 

characteristics verify the choice of MobileNet V2 in our 

architecture. 
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Fig. 3: Classification predictions by our system for images captured from uncertain scenes with smoke, snow, and fog. (a) and (b): fire with smoke, (c) and (d): fire 

in night time, (e): fire with snow, (f) and (g): normal with fog and fire-colored regions, (h), (i), and (j): normal with fire-colored lighting at night.

III. EXPERIMENTAL RESULTS AND DISCUSSION 

This section provides details about the datasets, followed by 

experimental evaluation and comparison of our method with 

CNN and hand-engineered features based fire detection 

methods. Next, the robustness of our system is evaluated 

compared to existing methods with discussion on system 

parameters and its feasibility to uncertain surveillance 

environment. Finally, the discussion is concluded by 

highlighting the importance of the proposed framework for 5G 

TI-enabled fire detection system for surveillance in uncertain 

industrial environments. Similar to CNNFire [25], we call our 

method “EMN_Fire”, [23] as “ANetFire”, and [24] as 

“GNetFire” in the remaining of the paper for ease of 

interpretation.  

A. Details of the Datasets 

For experimentations, we have created a new dataset from 

two benchmark datasets: Dataset1 (DS1) [9] and Dataset2 

(DS2) [38] with two classes “Fire” and “Non-fire”. For the 

creation of new dataset, we selected random images from both 

classes in which fog is added synthetically. Smoke and snow 

images from Internet are included to the newly created dataset 

to cover the uncertain environment. The integrated dataset 

comprises of a total of 30,776 images. To train and test the 

system, we used our recent strategy [25] by using 20% data of 

the dataset for training and rest of 80% for testing. With this 

approach, our model is trained with 1844 fire images and 6188 

non-fire images. The statistics of training and testing data is 

given in Table II. A few representative images from DS1 and 

DS2 with their remarks are given in Fig. 4. For further details 

about the two benchmark datasets and the reasons for their 

usage in experiments, refer to [25]. 
TABLE II 

STATISTICS OF TRAINING AND TESTING DATA FOR OUR SYSTEM 

 
Dataset 

source 

Total 

images 

Fire images Non-fire images 

Certain Uncertain Certain Uncertain 

Training 

Data 
DS1 8032 1604 240 4807 1381 

Testing 

Data 

DS1 22518 6000 1003 10515 5000 

DS2 226 100 19 90 17 

 

B. Comparison with CNN based Fire Detection Methods 

In this section, the performance of our system is compared 

with CNN based fire detection methods using the results, 

collected on both datasets of DS1 and DS2. Two different sets 

of evaluation metrics are employed to evaluate the performance 

of each method from all perspectives. The first set of metrics 

contain accuracy, false-negatives, and false-positives (also 

referred as false alarm rate) [25]. Using this set up, the proposed 

system is compared with the most recent work [25] and two 

other CNN based fire detection systems [23, 24]. The 

experimental results using both datasets are given in Table III. 
TABLE III 

COMPARATIVE RESULTS USING DS1 AND DS2 ON EVALUATION SET1 

Dataset Method 

Name 

False-Positives 

(%) 

False-Negatives 

(%) 

Accuracy 

(%) 

DS1 

EMN_Fire 0 0.14 95.86 

CNNFire 0.06 1.24 94.61 

GNetFire 0 1.09 93.66 

ANetFire 6.78 0.08 94.27 

DS2 

EMN_Fire 9.34 6.72 92.04 

CNNFire 18.69 2.52 89.82 

GNetFire 24.29 6.72 84.96 

ANetFire 23.36 1.68 88.05 

 

It can be seen that ANetFire achieved the best false-negatives 

(0.08), however, its false positives rate is high as well as its 

accuracy is 94.27%. GNetFire achieved similar false alarm rate 

to our proposed method, however, its accuracy is the worst 

using DS1. Our proposed system achieved the best combination 

of accuracy, false alarm rate, and false negatives using DS1, 

thus dominating other CNN models. The results using DS2 are 

also reported in Table III. DS2 is a small but challenging 

dataset. From results of DS2, we can see that GNetFire 

performed worst in terms of all metrics. CNNFire achieved 

better performance compared to ANetFire and GNetFire. The 

best combination is still achieved by our proposed system with 

minimum false alarm rate of 9.34% and highest accuracy of 

92.04%. Thus, our method is better than existing approaches 

using the first set of metrics on both datasets. 
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DS1 

Fire 

 
(a) Small amount of fire at far away 

distance in outdoor with synthetic fog 

 
(b) Small-sized fire at reasonable 

distance in indoor 

 
(c) Reasonable amount of fire with reddish 

grass and trees in outdoor  

Non-Fire 

 
(d) Sun-rising with smoke in outdoor 

 
(e) Sunny rays in indoor 

 
(f) Reddish outdoor scene with synthetic 

fog 

DS2 

Fire 

 
(g) Outdoor scene with small-sized fire 

and red-colored objects 

(h) Outdoor scene with fire inside 
building at a larger distance 

(i) 

Outdoor scene with fire and fire-like 
helmets of fire fighters 

Non-Fire 

 
(j) Indoor scene with fire-like lights 

 
(k) Outdoor scene with sunset 

 
(l) Indoor scene with fire-like lights 

Fig. 4: Representative images of fire and non-fire from both datasets with their descriptions. 
TABLE IV 

COMPARATIVE RESULTS USING DS1 AND DS2 ON EVALUATION SET2 

Dataset Method Name Precision Recall F-Measure 

DS1 

EMN_Fire 1 0.99 0.99 

CNNFire 0.99 0.98 0.98 

GNetFire 1 0.97 0.98 

ANetFire 0.93 0.99 0.96 

DS2 

EMN_Fire 0.90 0.93 0.92 

CNNFire 0.83 0.97 0.90 

GNetFire 0.79 0.93 0.85 

ANetFire 0.80 0.98 0.88 

 

To further investigate the performance of fire detection 

methods under consideration, we use another set of evaluation 

metrics including precision, recall, and F-measure. The 

complete details of these metrics can be found in [38, 39]. The 

incurred results using both DSI and DS2 through the second set 

of evaluation metrics are given in Table IV. Overall, the 

performance of ANetFire is worst on DS1, considering the 

precision and F-measure score. The performance of GNetFire 

and CNNFire [25] is almost same. The proposed system 

dominated other competing methods in terms of precision, 

recall, and F-measure score, showing its strength on DS1. 

Referring to DS2, GNetFire performed worst both in terms of 

precision and F-measure. ANetFire is better than GNetFire, 

however, it failed to beat CNNFire [25]. As shown, the 

proposed system successfully outperformed the competing fire 

detection systems, both in terms of precision and F-measure. 

The improvement is due to the deep but light-weighted neural 

networks used in the employed architecture for effectively 

learning discriminative features for fire detection. 

C. Comparison with Hand-Crafted Features based Fire 

Detection Methods 

This section investigates and analyzes the performance of the 

proposed system with respect to traditional fire detection 

methods and presents a comparison using both DS1 and DS2. 

The same two sets of evaluation metrics are used as mentioned 
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in Section III (B). Using the first set of evaluation metrics and 

DS1, the proposed system is compared with six representative 

methods that are based on color, motion, and shape 

characteristics of the fire. The comparative results are given in 

Table V. From the results, the worst method is [15] using RGB 

color model with highest false alarm rate of 41.18% and 

smallest accuracy of 74.20%. The method [14] has 0% false 

negatives, however, its accuracy is only 83%. The best method 

in the given existing methods in terms of false positives, is [16] 

with 5.88%. Similarly, in terms of false negatives, [14], [9], and 

[17] performed well. The reasonable combination in all three 

scores is achieved by [9] with accuracy 93.55% and false 

negatives 0%. However, the false alarm rate is really high and 

better accuracy is preferable, considering the critical nature of 

disaster management systems. Our proposed system has 

resolved these issues and has boosted the accuracy to 95.86% 

with 0% false alarms and negligible false negatives of 0.14%. 
TABLE V 

COMPARISON WITH DIFFERENT HAND-CRAFTED FEATURES BASED FIRE 

DETECTION METHODS ON DS1 

Method Name 
False  

Positives (%) 
False 

Negatives (%) 
Accuracy (%) 

EMN_Fire 0 0.14 95.86 

[9] 11.67 0 93.55 

[17] 13.33 0 92.86 

[16] 5.88 14.29 90.32 

[15] (RGB) 41.18 7.14 74.20 

[15] (YUV) 17.65 7.14 87.10 

[14] 29.41 0 83.87 

[12] 11.76 14.29 87.10 

 

For further investigation, we compared our system using 

DS2 with the second set of evaluation metrics. The results are 

shown in Table VI. For readers’ information, it is worth notable 

that DS2 is not used in training process of the proposed system, 

CNNFire, GNetFire, and ANetFire. From the results, it can be 

seen that the worst method is [12] with an F-measure score of 

0.25 from which [40] is better. [14] and [41] have similar results. 

The recent method BoWFire [38] achieved better performance 

compared to other existing methods. Interestingly, our proposed 

system outperformed all existing methods in terms of all three 

metrics using DS2, showing its effectiveness. 
TABLE VI 

COMPARISON WITH HAND-CRAFTED FEATURES BASED FIRE DETECTION 

METHODS ON DS2 

Method Name Precision Recall F-Measure 

EMN_Fire 0.90 0.93 0.92 

BoWFire [38] 0.51 0.65 0.57 

[41] 0.63 0.45 0.52 

[40] 0.39 0.22 0.28 

[14] 0.55 0.54 0.54 

[12] 0.75 0.15 0.25 

 

D. Robustness Analysis 

For uncertain environment, it is important that the fire 

detection system is robust against well-known attacks. In this 

section, we have evaluated the robustness of our system against 

noise and fire blockage attack and have compared its results 

with state-of-the-art as shown in Fig. 5. It can be noted that the 

proposed method provides best result in majority of the cases 

while second best result in some cases, reflecting its superiority 

for fire detection in uncertain environments with different 

weather conditions. 

E. System Feasibility Analysis for Uncertain Environment  

Besides simulation, it is important to investigate the 

feasibility of a system for deployment in real-world. This 

section is aimed at providing similar details about our system 

for deployment in uncertain 5G TI-enabled IoT surveillance 

environment. To this end, we tested our system on two settings 

with: 1) NVidia TITAN X (Pascal) having 12 GB onboard 

memory with a deep learning framework [42] running with Intel 

Core i5 CPU with Ubuntu OS and 64 GB RAM and 2) a 

Raspberry Pi 3 having 1024 MiB SDRAM and 1.2 GHz 64-bit 

ARMv8 Cortex-A53. Based on these two settings, our proposed 

system can process 34 fps and 5 fps, respectively. Since 

processing few frames in real-time are enough for detection of 

fire and the conventional cameras can capture 25~30 fps, thus 

our system is significant enough for real-time fire detection. 

The comparison of our system in terms of fps, accuracy, and 

false alarm rate with state-of-the-art using DS1 is given in Table 

VII. 

From the incurred results, [17] seems to be the best method 

in terms of fps, however, its accuracy is low and this method is 

tested on a very small dataset, which is not benchmark. Also, it 

has a false alarm rate of 6.67% and the deployment details are 

not known. The method [9] achieved better processing speed of 

60 fps with reasonable accuracy, however, the false alarm rate 

of 11.67% is high and not much recommendable. The CNNFire 

[25] achieved 20 fps with 94.50% accuracy, however, its false 

alarm rate of 8.87% is still high and not preferable, considering 

the critical nature of disaster management systems. Our 

proposed method achieved the best accuracy of 95.86% with 

false alarm rate of 0% using DS1. The running time of our 

method is 34 fps with setting 1 and 5 fps with setting 2, showing 

its superiority over the state-of-the-art. 
TABLE VII 

IMPLEMENTATION DETAILS WITH COMPARATIVE PERFORMANCE OF THE 

PROPOSED SYSTEM AND STATE-OF-THE-ART 

Method Fps 
Accuracy 

(%) 

False alarm 

rate (%) 
Remarks 

EMN_Fire 34 95.86 0 Setting 1 

EMN_Fire 5 95.86 0 Setting 2 

CNNFire 

[25] 
20 94.50 8.87 Setting 1 

CNNFire 

[25] 
4 94.50 8.87 Setting 2 

[9] 60 93.55 11.67 

Intel dual core 

T7300 with 4 GM 

RAM 

[9] 3 93.55 11.67 

Raspberry Pi B 

(ARM processor 

with 700 MHz 

and 512 MiB 
RAM 

[17] 70 92.59 6.67 - 

[16] 20 90.32 5.88 
Dual core 2.2 

GHz 

 

Besides the better performance, our employed architecture is 

light-weighted with fewer mega floating-point operations per 

second (MFLOPS) and reasonable size as given in Table VIII. 

It can be seen that our method needs fewer MFLOPS/image 

compared to other models, enabling it to execute several 

surveillance streams. Similarly, the size of our model (13.23 
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MB) is also reasonable and easily deployable on resource 

constrained devices. Another motivational point of our system 

is that it can be easily run on a raspberry Pi device (such as 

raspberry Pi 3), whose price is much affordable ($35). 

Considering the overall performance evaluation metrics, model 

size, and MFLOPS/image, we can claim that our system is the 

best candidate for early fire detection in certain surveillance in 

general and uncertain surveillance environment in particular, 

compared to existing fire detection systems. 
TABLE VIII 

MODELS SPECIFICATION IN TERMS OF MEGA FLOATING POINT OPERATIONS 

(MFLOS)/IMAGE AND SIZE 

Method Name MFLOPS/image Size (MB) 

EMN_Fire 300 13.23 

CNNFire 833 3.06 

GNetFire 1500 43.30 

ANetFire 720 233 

F. 5G Tactile Internet-Enabled Fire Detection System for 

Surveillance in Uncertain Industrial Environments 

According to the International Telecommunication Union, 

the Tactile Internet is an internet network that combines ultra-

low latency with extremely high availability, reliability, and 

security”. Unlike IoT that interconnects smart devices, the TI is 

going to control the IoT in real-time, needing ultra-reliable 

infrastructure [1]. The reason is that several tasks of critical 

nature (e.g., early fire detection in uncertain scenes during 

industrial surveillance) need to be executed remotely and 

instantly, requiring cheap edge infrastructure for ease of 

scalability. Considering these constraints, 5G can be a suitable 

underlying network infrastructure for such environment. 

 

Method Original input image Fire blocked Fire region affected with noise 

 

   
Fire Normal Fire Normal Fire Normal 

EMN_Fire 100.0% 0.0% 1.87% 98.13% 85.4% 14.6% 

CNNFire 97.9% 2.1% 1.8% 98.2% 9.0% 91.0% 

GNetFire 65.08% 34.9% 2.9% 97.1% 46.6% 53.33% 

ANetFire 92.4% 7.6% 7.88% 92.12% 9.43% 90.57% 

 

   
Fire Normal Fire Normal Fire Normal 

EMN_Fire 59.01% 40.98% 38.69% 61.31% 64.43% 35.56% 

CNNFire 0.2% 99.8% 0.02% 99.98% 0.02% 99.98% 

GNetFire 48.5% 51.49% 0.83% 99.17% 48.9% 51.11% 

ANetFire 1.19% 98.81% 7.32% 92.68% 0.5% 99.5% 

 

   
Fire Normal Fire Normal Fire Normal 

EMN_Fire 99.88% 0.12% 3.51% 96.49% 51.42% 48.55% 

CNNFire 97.47% 2.53% 0.98% 99.02% 53.8% 46.2% 

GNetFire 9.36% 90.64% 4.15% 95.85% 4.4% 95.6% 

ANetFire 88.5% 11.5% 11.1% 88.85% 51.34% 48.6% 

Fig. 5: Robustness analysis using fire blocking and noise attack for the proposed method and other state-of-the-art. Best result is shown in bold font while the 2nd 
comparable result is shown in italic font 
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TI can intelligently combine multiple technologies at network 

and application level, enabling intelligence via mobile edge 

computing and data transmission over a 5G network. As 

described in previous sections, recently several CNN based fire 

detection approaches using edge intelligence are presented. 

These methods achieved reasonable accuracy for surveillance 

in certain IoT environment. However, their performance is 

limited in terms of fire detection in uncertain environment such 

as smoke, fog, and snow that can happen frequently in 

surveillance. Furthermore, the fire detection alert and 

representative video frames need reliable and instant reporting, 

considering the critical nature of disaster management. This 

goal can be achieved using a 5G TI-enabled fire detection 

system for which our proposed framework fits well, considering 

its promising accuracy, minimum false alarm rate, and response 

time. Furthermore, the size of the proposed model is reasonable 

due to usage of light-weight deep neural networks that favors 

its running time, making it suitable for fire detection during 

surveillance in uncertain industrial environments for mobile 

and embedded vision applications. 

IV. CONCLUSION AND FUTURE WORK 

With the recent achievements of CNNs for solving numerous 

problems, researchers have applied them for abnormal event 

detection such as fire. Early detection of fire is very important 

to disaster management systems for which several CNN based 

fire detection methods using edge intelligence are presented to 

date. These methods have reasonable accuracy and execution 

time and are applicable to only certain environment. In case of 

uncertain environment having fog, smoke, and snow, their 

performance is limited. In addition, it is difficult to deploy 

computationally expensive fire detection models on resource 

constrained devices. Considering these motivations, an efficient 

CNN based method is proposed in this work for fire detection 

in videos of uncertain environment. Our method provides 

several advantages compared to recent fire detection 

approaches of complex and huge-sized CNN models such as 

AlexNet, SqueezeNet, and GoogleNet. First, our method is 

based on light-weight deep neural networks with no dense fully 

connected layers, making it computationally inexpensive. 

Second, the size of the resultant model is approximately 13 MB, 

which is easily deployable on mobile devices with embedded 

vision. Lastly, our method dominates state-of-the-art in terms 

of fire detection accuracy and number of false alarms as verified 

from experimental results. In addition, the robustness of our 

method against different attacks and its feasibility analysis also 

verify its effectiveness. We believe that our method is superior 

compared to state-of-the-art and a suitable candidate for 

integration with disaster management systems under the 

umbrella of 5G TI and industrial surveillance.  

Our current method is focused on fire detection with 

reasonable model size for resource constrained devices in 

uncertain environment. This work can be extended for 

extraction of detailed contextual information from fire scenes 

such as object on fire, burning degree, and fire growth rate etc. 

Furthermore, a hybrid system can be developed by integrating 

smoke detection methods with the current work for intelligent 

management of fire disasters. Finally, our framework can be 

combined with industrial systems, 5G IoT, traffic, and robotics 

for more safe automation, traveling, richer, and trustworthy 

experience [43-47]. 
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