
Computers in Industry 98 (2018) 23–33
Visual features based boosted classification of weeds for real-time
selective herbicide sprayer systems

Jamil Ahmada, Khan Muhammada, Imran Ahmadb, Wakeel Ahmadc, Melvyn L. Smithd,
Lyndon N. Smithd, Deepak Kumar Jaine, Haoxiang Wangf, Irfan Mehmoodg,*
a Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University, Seoul, Republic of Korea
bCentre for Excellence in Information Technology, Institute of Management Sciences, Peshawar, Pakistan
cDepartment of Agronomy, University of Agriculture, Peshawar, Pakistan
dCentre for Machine Vision, Bristol Robotics Laboratory, University of the West of England Bristol, United Kingdom
e Institute of Automation, Chinese Academy of Sciences, Beijing, China
fCornell Unviersity, NY, USA
gDepartment of Software, Sejong University, Seoul, Republic of Korea

A R T I C L E I N F O

Article history:
Received 11 July 2017
Received in revised form 11 January 2018
Accepted 22 February 2018
Available online xxx

Keywords:
Weed classification
Machine learning
Computer vision
Image segmentation
Selective herbicide sprayer systems
Boosted classifier for weed detection

A B S T R A C T

Recent years have shown enthusiastic research interest inweed classification for selective herbicide sprayer
systems which are helpful in eradicating unwanted plants such as weeds from fields, minimizing the side
effectsofchemicalsontheenvironmentandcrops.Twocommonlyfoundweedsaremonocots(thinleaf)and
dicots (broad leaf), requiring separate chemical herbicides for eradication. Researchers have used various
computer vision-assisted techniques for eradication of these weeds. However, the changing and un-
predictive lighting conditions in fields make the process of weed detection and identification very
challenging. Therefore, in this paper, we present an efficient weed classification framework for real-time
selective herbicide sprayer systems, exploiting boosted visual features of images, containing weeds. The
proposed method effectively represents the image using local shape and texture features which are
extracted during the leaf growth stage using an efficient method, preserving the discrimination between
various weed species. Such effective representation allows accurate recognition at early growth stages.
Furthermore, the various illumination problems prior to feature extraction are minimized using an adaptive
segmentation algorithm. AdaBoost with Naïve Bayes as a base classifier discriminates the two weed species.
The proposed method achieves an overall accuracy 98.40%, with true positive rate of 0.983 and false positive
rate of 0.0121 for the original dataset and achieved 94.72% accuracy with the expanded dataset. The
execution time of theproposed method isabout 35 millisecond perimage,which is less than state-of-the-art
methods.

© 2018 Published by Elsevier B.V.
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1. Introduction

Elimination of unnecessary plants such as weeds from fields is
one of the tedious jobs for farmers on a regular basis. Weeds in
fields result in various issues such as competing for water,
nutrients, light, and space; reducing crop yields; and affecting the
surrounding environment [1]. To eradicate these weeds from
fields, chemical herbicides [2] can be effectively used. Herbicides
must be applied in a way to successfully eliminate weeds, avoiding
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their unwanted effects on remaining crops and environment [3,4].
In a recent study, Laursen et al. [4] presented an algorithm to
segment and quantify weeds in Maize crops in order to reduce
herbicide usage. Their study revealed that the selective application
of herbicides reduces its usage by 65%. Weeds may grow in patches
or individually, however, applying herbicides equally on all parts of
the field is ineffective. In this case, the sprayer system should spray
selectively on the concerned regions of the fields only [5].
Computer vision-directed approaches are helpful in this regard
to develop smart sprayer systems which can selectively spray
herbicides on weeds in the fields. Numerous methods [6–10] have
been developed for weed classification but they lack classification
accuracy and are not robust to varying field conditions. Hence, the
superlative set of features and classification approach is yet to be
discovered [1,11].
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The intelligent sprayer systems such as those equipped with
visual sensors along with a mechanical sprayer, capture images
from the field which are then processed for detecting the existence
of weeds [12–15]. The detected weeds are then classified into
monocots and dicots and lastly suitable signals are sent to the
sprayer system for applying herbicides to the detected weed
patches. Visual features such as texture, color, and shape are
typically extracted from the captured images. Texture based
features have been extensively applied for weed classification [16].
Previous methods of weed classification utilized features such as
leaf shape and plant structure [6,17]. Later on, some color and
texture based methods [6] were also proposed. Nevertheless,
majority of the techniques fail to balance the efficiency and
effectiveness of weed classification in terms of processing speed
and accuracy. Therefore, the goal is to develop a fast technique
which is suitable for real time weed classification, avoiding
unnecessary computations, and providing accurate classification
under varying field environments.

To achieve such a system, researchers from the last decade have
presented various weed classification techniques [1,18]. Ahmad
et al. [19] utilized simple statistical features for weeds classifica-
tion, achieving a low accuracy as the technique utilized too naïve
features. To improve the accuracy, Siddiqi et al. [20] explored edge
link detector, achieving an accuracy of 93% on a small dataset. The
authors in Ref. [8] utilized wavelets by extracting highest 200
coefficients and integrated them with the k-nearest neighbor
classifier (K-NN) for classification, achieving an accuracy of 95%.
This work was further improved by employing multi-level wavelet
decomposition (MWD) based classification by extracting highest
coefficients of the wavelet decomposed images, representing
weeds. However, the method fails to work effectively under
varying field conditions [21]. Faisal et al. [16] incorporated local
binary patterns along with template matching and support vector
machine (SVM) classifiers for weed classification. But, their
technique demands for extra computation due to its feature
invariance property. Their technique achieved 89% accuracy in case
of template matching and 98% with radial basis function (RBF)
kernel based SVM classifier. However, due to exploring expensive
texture descriptors for making the method geometric transform
invariance, the computational complexity increased, hence mak-
ing it less suitable for real-time applications.

In an attempt to reduce complexity, image morphology features
along with neural network classifier (ANN) have also been used for
classification of weed images, taken from outdoor fields. Illumina-
tion invariant segmentation procedure helped in achieving an
overall accuracy of 95.1% with ANN classifier [10]. Seven hue
moments and six shape features were extracted from weed images
to classify them into monocots and dicots with an accuracy of 85%
[6]. The images used during the experiments contained very little
weeds. It was not difficult to analyze the individual leaves.
However, in many cases, high infestations of weed are found
throughout the fields and analyzing individual leaves become
impractical. Therefore, in high weed infestations these methods
would fail to perform. A similar study was conducted in Ref. [9],
employing seven hue moments for weed classification. This
method also failed to cope with high weed densities. Giselsson
et al. [22] utilized close contour shape features to distinguish
between two classes of plant seedling. They achieved 97.5%
accuracy with Legendre Polynomial feature set while classifying
nighshade and cornflower. Siddiqi et al. [23] explored a new
wavelets family for features extraction from weeds images which
were later on minimized based on step-wise linear discriminant
analysis, making them linearly separable. Classification was
performed by SVM achieving an accuracy of 98.1% with symlet
wavelet features. To increase the accuracy, a mixture of features
were used by authors in Ref. [24], including co-occurrence matrix,
Haralick features, shape analysis, and histogram features, classify-
ing weeds from captured field images while achieving an average
accuracy of 97.6% for both types of weeds. However, these methods
were evaluated on noise-free, blur-free images, and without taking
into consideration the illumination changes being faced in the
field. Furthermore, their method was computationally expensive,
requiring 0.35 s for classifying an image.

The aforementioned methods exploited various features and
classifiers for weed classification. However, none of the methods
produce satisfactory results when coping with intense field
conditions such as illumination variations, motion blur, and noise.
Some of the methods achieved high accuracies but with huge
computational complexity, making them unsuitable for real-time
applications [16,20]. Other techniques were computationally
efficient but lack acceptable accuracy, decreasing its applicability
in various areas of interest [8]. Furthermore, some of the existing
methods fail to cope with various lighting conditions which further
limit their accuracy [1]. Therefore, it is very important to exploit a
method for weed classification, maintaining the balance between
accuracy, efficiency, and robustness.

In this paper, we propose a fusion based weed classification
framework for overcoming the problems of existing methods in
terms of classification accuracy, resilience against various lighting
conditions, and efficiency. The major contributions of this research
work are as follows.

i An efficient fusion based framework is proposed for effective
weed classification, maintaining a balance between classification
accuracy and efficiency, hence making it more suitable for real-
time applications such as selective herbicide sprayer systems.

ii The proposed framework utilizes boosted visual features,
incorporating both shape and texture information and are
extracted using an efficient method, preserving the discrimina-
tion between various weed species and crops, hence results in
satisfactory performance.

iii The proposed framework uses an adaptive segmentation
algorithm prior to feature extraction, minimizing the various
illumination, noise, and motion blurring problems, hence
making it more suitable for weed classification.

iv A hybrid classifier AdaBoost ensemble of Naïve Bayes [25,26]
was used for classification, increasing the accuracy of current
state-of-the-art weed classification methods.

The rest of this paper is structured as follows. Section 2 explains
the detail of the proposed weed classification system. Section 3
explores experimental results and discussion. Section 4 concludes
the paper and suggests future research directions.

2. Materials and methods

In this section, we describe the details of the proposed weed
classification system. The proposed system comprises of two main
phases: an offline training phase and a real-time classification
phase. During the training phase, the main objective is the
construction of a robust classifier model, having the capability to
efficiently distinguish between two weed species in the presence
of noise, illumination variation, and motion blurring. This objective
is achieved by incorporating three steps in the proposed system.
Firstly, an adaptive segmentation algorithm is used to handle the
undesirable effects of noise, motion blur, and illumination during
image acquisition. Secondly, visual features are extracted, incor-
porating both texture and shape, hence effectively drawing the
boundaries between the two weed species. Finally, the AdaBoost
along with Naïve Bayes classifier is used to train the classifier,
resulting in the required classifier. During the testing phase, the
same features are extracted from captured images and the
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appropriate label is then assigned to it based on which the sprayer
system applies the appropriate herbicide to weed patches. The
major steps of the proposed system are depicted in Fig. 1.

2.1. Image segmentation

Images captured from outdoor fields vary greatly in the
illumination levels due to the varying lighting and weather
conditions causing illumination variations, and shadows which
affects the segmentation process. Several interesting studies have
been carried out to deal with illumination variations [6] and
vegetation segmentation in the presence of shadows [27]. In this
paper, we attempt to devise an overall computationally efficient
framework which can effectively deal with such circumstances. All
the phases of the proposed framework has been designed in such a
way that the subsequent module can effectively deal with any
imperfections in the previous stage. For instance, the feature
extraction process can tolerate with slight noise and motion blur
which may cause slightly improper segmentation. Low quality
sensors often introduce noise and motion blur during the image
acquisition process. In order to achieve efficient segmentation, care
must be taken to cope with these challenges. In addition to these
issues, real-time systems need fast segmentation algorithms.
Keeping in view all these constraints, a computationally efficient
and adaptive segmentation procedure has been devised which
dynamically computes threshold values for each image to segment
the green components from the rest of the image. The purpose of
segmentation process is to eliminate background objects like
ground and noise which may cause mis-classifications, prior to
feature extraction. For an input image, I2RM�N, a background
elimination function is given in equation 1 as follows.

S ¼ 0:299 � IR þ 0:587 � IG þ 0:114 � IB; IG > IR&IG > IB&IG > T0
0; Otherwise

� �
ð1Þ

Herein, IR, IG, and IB represent red, green, and blue planes of the
input image I, respectively. S shows the resultant output image
produced by this phase. It encompasses either zeros indicating
background pixels or grayscale values for the detected weeds,
Fig. 1. The proposed weed
calculated based on standard color-to-gray conversion formula. For
selection of optimal threshold value T0 for each image in order to
minimize the effect of illumination caused by environmental
conditions, several experiments were conducted. It was found that
the optimal value can be computed for each image dynamically
using the mean intensity value of the image being observed as
follows.

T0 ¼ a
1

MN

X
x

X
y
Iðx; yÞ ð2Þ

Where M and N are the dimensions of image (i.e. number of rows
and columns), and a is an intensity gain factor used to control the
threshold in different field and noise conditions. Applying simple
noise reduction filters like mean and median filters help in keeping
sustainable performance in case of noisy images. As a post-
thresholding step, trivial objects may be removed from the
segmented images using morphological opening with a small
3 � 3 disk shaped structuring element.

Minimizing the effects of the various image degradations is
essential because incorrect segmentation leads to low perfor-
mance [28,29]. In addition to this, real-time systems require
computationally in-expensive procedures. Therefore, segmenta-
tion algorithms consisting of simple steps with sufficient accuracy
are most desirable. Initial work conducted in this regard either
ignored illumination variation [8,23,30] or used computationally
expensive procedures for segmentation [16,31], which affects the
overall framework adversely

2.2. Features extraction

Byobserving bothtypes of weeds from the captured images, it can
be easily noticed that both species have the same color but different
texture and leaf shapes. Therefore, both of these characteristics need
to be quantified in a manner that will support the classificationphase
later in the process. Extraction of the texture and shape features is
described in the following sub-sections.

A. Extraction of edge orientation features
From the spatial layout of a variety of weeds including Southern

Sandbur, Large Crabgrass, Curly Dock, Dallis grass, Nutsedge, Ground
 classification system.
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Ivy, and Spotted Spurge, etc., it was observed that both grass and
broad leaf weeds have different edge distributions across the entire
image especially during the stage when their leaves have somewhat
grown in shape. Since, the edge orientation features can be
effectively computed based on the leaves, the proposed method
can be applied well before the flowering stage. This observation lead
us to believe that capturing this characteristic will help in
discriminative representation of the weeds. For this purpose, the
edge orientation histogram (EOH) [32] feature was extracted from
the images with slight modifications. Instead of blindly selecting the
default 4 � 4 grid setup for computation of the EOH, we decided to
experiment with different settings. Experiments were conducted to
determine optimal number of grids for a certain height at which the
images were captured in the field. Further details of the experiment
are provided in Section 3. The EOH feature represents texture by
accumulating the number of edges having different orientations in
the sub-images into a histogram. Edges of different orientations are
detected using the Sobel filters [33] specified in Fig. 2. These filters
detect horizontal, vertical, and diagonal (45 and 135) edges. The
prominent edges are preserved, whereas the remaining of them are
removed based on a simple threshold function, where the threshold
valuewas chosen in away to improve discriminative capabilityof the
feature vector being computed. It is achieved by eliminating trivial
edges from images of both weed types, because their presence
affected the overall recognition performance. In this case, a fixed
threshold value of 85 was chosen. Each bin in the EOH histogram
correspond to the number of edges of a particular orientation in a
particular sub-image. In this case, 4 � 4 sub-images resulted into
4 � 4 � 4 = 64 bin histogram per image as a texture feature.

Broad weed leaves are circular in nature forming clusters of
leaves across the fields. They produce almost equal number of edge
pixels along all orientations. In contrast to this, grass weed leaves
are longer producing comparatively longer edges at certain
orientations. The EOH effectively captures these characteristics
forming different histograms for the two weed species. The EOH
histogram is computed by concatenating all the local orientation
histograms as follows.

EOH ¼
[b
i¼1

Bini ð3Þ

Where EOH is the edge orientation histogram with b bins, each of
which is calculated using equation 4 as follows.

Binj ¼
X

fjjj 2 S ^ j 2 Eog ð4Þ

Where S 2 S1 ; S2 ; ::::::::Snf g and Eo 2 {0, 45, 90, 135}, Binj is the jth

bin value which represents the number of edge pixels belonging to
a particular edge-type and a particular sub-image S. It was also
observed that textural features alone cannot adequately model
both weeds. Therefore, local shape features are also used along
texture to allow accurate classification. For allowing the fusion of
the two features, the EOH is normalized to the range [0,1] using the
equation 5 as follows.

EOHn ¼ EOH
maxðEOHÞ ð5Þ
Fig. 2. Four filters for detection of (a) horizontal (b) verti
In Fig. 3(a), it can be noticed from the segmented images
containing grass weeds, that there exists more edges at certain
orientations due to the lengthy nature of the leaves. This
characteristic of the grass weeds is reflected in the EOH having
higher values at certain orientations and lower values at other
orientations. In contrast to this, the EOH of corresponding broad
weed images in Fig. 3(b) shows relatively lower variation in the
number of edges at different orientations. This uniformity in edge
distributions atallorientations signifythe roundness of broad leaves.
Hence, the EOH descriptor effectively captures distinctive features of
the two weed species.

In order to exhibit the discriminative characteristics of the EOH
descriptor for the two weed species, Fig. 4 shows the mean feature
vectors for both classes along with standard deviation of each
feature. It can be seen that there exist significant variations in most
of the features which eventually assist the classification stage in
making accurate predictions.

B. Shape matrix histogram (SMH)
In addition to texture, local shape features of the weeds are also

captured using a grid based local feature extraction approach
[34,35]. Since the weed leaves in these images are mostly
overlapped, it becomes difficult to isolate them and analyze their
shapes individually. Global shape analysis also becomes ineffective
due to the high degree of overlap in both weed types. Therefore,
local shape features are extracted by dividing the entire image into
d � d sub-images. The shape of leaves in each grid cell is analyzed.
In order to capture the thickness/roundness or thinness of the
leaves, local coverage feature is computed for all cells in the image.
Broad leaves tend to produce more cells with higher coverage
values than thinner leaves, allowing us to capture structure of the
objects contained in the image. The layout of leaves in grid cells is
illustrated in Fig. 5. It can be seen from close observation, that the
area covered by broad leaf is large, hence, there exists larger
number of grid cells that are almost fully covered by leaves. This
characteristic is also used for discrimination between the two
weed species.

The coverage feature for each cell is computed using equation 6
as follows.

Rc ¼ As

Ac
ð6Þ

Herein, Rc represents coverage value of cell c, As shows the area of
the leaf inside cell c, and Ac is the grid cell area. In broad weed
image, there will be higher cell count with larger Rc compared to
grass weed image. Similarly, there will be higher cell count with
smaller Rc values in grass weed images. These Rc values obtained
from the grid cells form a shape matrix SM2Rd�d. For reducing the
feature dimension and capturing the essence of this matrix, a
histogram is populated by quantizing the values in SM into 10 bins.
The quantization strategy is depicted in equation 7 as given.

SMHi ¼
X
i

ð Ri
c � 10

l m
¼ iÞ; i ¼ f1; 2; 3; :::10g ð7Þ

The SMH feature for grass and broadleaf weed types is shown in
Fig. 6. From the shape matrix (middle), it can be seen that the
number of grid cells having higher Rc values in broad weed image is
cal (c) diagonal at 45 and (d) diagonal at 135� edges.



Fig. 3. Segmentation results. (a) Segmented grass weed images and their EOH (b) Broadleaf weed segmented images with their EOH.

Fig. 4. Mean feature vectors (EOH) of both weed types with standard deviations.

Fig. 5. Leaf structure inside grid cells. (a) A sample of broad leaves (b) A sample of thinner leaves.
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much higher than the others. Grid cells with higher Rc values are
represented in red color, whereas lower Rc values are shown in
blue color. The dark blue portion of the image represents the
background. Cells in light blue color indicate narrower structures
(grass leaves), whereas cells in red color indicate bigger structures
(broadleaf leaves). The SMH (right) clearly shows different
histograms for both weed species. The SMH of grass weed shows
relatively uniform distribution of quantized Rc values in the shape
matrix. There is little difference in the distribution of higher Rc

values and the rest. In contrast to this, the SMH of broad weed
image shows a huge difference in the number of cells with Rc

values > 0.9 and the rest. The SMH feature analyzes weed images
locally and represents local structures in a compact way. It can be
seen from both images that there exists sufficient discrimination in
the SMH of both species, which allows their classification with
higher accuracy.



Fig. 6. Weeds and their corresponding shape matrix histograms. (a) grass weed image, its shape matrix, and shape matrix histogram (b). Broad weed image, its shape matrix,
and shape matrix histogram.
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Inadditiontothis, theshapematrixcanalsobeusedto localizethe
two weed types in a single image. Broad and grass weed leaves can be
easily detected by analyzing their SMs. Grid regions with dense
clustersofhigher Rcvaluesrepresentbroadweeds,whereasgridcells
with lower Rc values indicate grass weeds. Mean feature vectors of
both weed classes are illustrated in Fig. 7 to provide an insight on the
discriminative ability of feature vectors. Finally, the 64-bin EOH and
10-bin SMH features are combined to form a single 74 dimensional
feature vector. The normalized values of both these features are
concatenated to form a signature for representing weeds as follows.

Sig ¼
[

ðEOH; SFHÞ ð8Þ

Fig. 7 shows the comparison of SMH for both weed types. The
mean feature vectors for broad leaf weed and grass clearly shows
that there exist variations at almost all the feature values except
feature 7. This class-wise discrimination provides a solid founda-
tion upon which the classification stage can make confident and
accurate predictions.

3. Experimental results and discussion

In this section, we illustrate the complete experimental setup
for the proposed framework and evaluate its performance from
different viewpoints. The proposed framework is implemented
using MATLAB R2014a on a PC running Windows 7 professional
with 8 GB RAM and 3.40 GHz Core i5 processor.

3.1. Dataset

We have used a dataset of 500 images (250 images of each weed
type) for evaluation of the proposed framework. The images included
in the dataset were acquired from outdoor fields under varying
lighting and environmental conditions in resolution 320 � 240 from
Fig. 7. Mean feature vectors (SMH) of both weed types with standard deviations.
fields in the Khyber Pakhtunkhwa province, Pakistan. In order to
comprehensivelyevaluate performance of the system invarying field
conditions, images were captured during different times of the day
and under different weatherconditions. Furthermore, attempts were
made to induce motion blur during the image capturing process. To
further test the robustness ofour method, fivedifferent levels ofnoise
wasintroducedinimagesbyaddingzero meanGaussiannoisehaving
variance 0.01 to 0.05. This helped in building a much diverse dataset
that will allow comprehensive evaluation of the proposed scheme.
These synthesized images containing noise were added to both
training and test sets. All the experiments were conducted using 10
folds cross validation where 90% of the datawas used for training and
the remaining 10% was used for testing in each fold.

Average classification accuracy was used to measure the
performance of the proposed scheme. It is the ratio of correctly
classified samples to the total number of samples in the dataset.
Ideally, higher accuracies are desired under all circumstances. It
shows the overall strength of the algorithm in performing the
intended tasks.

Accuracy ¼ NumCorrectly Classif ied

Total Num
� 100 ð9Þ

Various experiments were conducted to test the performance of
all the three modules in the proposed framework. The details of
experiments and their results are provided in the subsequent
sections.

3.2. Performance evaluation of the proposed adaptive segmentation
algorithm

Image segmentation is the first phase in the framework and
undoubtedly the most important one because the performance of
the subsequent modules heavily depend upon it. Accurate and
robust segmentation procedure is the key to a successful machine
vision system. In the present scenario, there were several
challenges during the segmentation phase to cope with. Keeping
in view these challenges, the performance of the proposed
algorithm was evaluated using three different experiments. The
details are given in the subsequent sections (section A, section B,
and section C).

A. Effect of illumination on segmentation
For this test, images captured during variable environmental

conditions were used. Illumination variation often produces
undesirable segmentation results, affecting the features extraction
process, which eventually lead to misclassifications. The adaptive
nature of the proposed algorithm allowed it to handle illumination
variations quite effectively. Some of the images along with the
output of segmentation phase are provided in Fig. 8. The adaptive
selection of the threshold value enables it to cope with varying
lighting conditions in the fields, thereby producing similar output
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despite illumination variation. For low illumination, the classifica-
tion performance dropped 1.5% and for higher illumination it
dropped just under 1%.

B. Effect of motion blur on segmentation
Image capturing during motion produces blurriness in images

which affects performance of the segmentation algorithm and
overall classification, thereby making it necessary to investigate
the effect of image blur. Hence, experiments were designed to
evaluate performance of the proposed framework on blur images.
Images were captured by modifying the speed of the camera to
induce varying amounts of blur in them, so that its effect on
performance could be evaluated. The segmentation algorithm,
effectiveness and invariance of the extracted features, and the
classifier, all contribute towards accuracy in such circumstances.
Fig. 9 shows some visual results of the segmented blur images. It
can be seen that with the varying degree of blur, the segmentation
algorithm successfully removes the background. This is also
evident from the classification results in Table 1, that there is
only slight drop in performance when the degree of blur gets very
high. With low blur, the performance drops by about 1%, whereas
with high blur, a drop of 7.5% was noticed. Since, the field camera
motion is slow, chances of high blur are low. Hence, performance
hit with blurriness in real circumstances will be minimal.

C. Effect of noise on performance
Fig. 8. Results of the proposed adaptive segmentation method under variable illuminat
produced by the proposed adaptive segmentation scheme.

Fig. 9. Results of the proposed adaptive segmentation algorithm under motion blurring. 

image.
Varying field conditions, low illumination, and low quality
imaging sensors introduce noise in images. Noise causes
significant performance drops in segmentation algorithms [36].
In this case, gaussian noise of varying intensities was introduced
in images prior to image segmentation to evaluate performance of
proposed scheme. The classification performance without noise
and with varying noise levels is given in Table 2. It was observed
that noise causes a drop of 6–10% in accuracy when no removal
attempt is made prior to image segmentation. However, this drop
in accuracy was reduced to 2–5% when the noisy image was
fitlered with a small mean filter. In the absence of noise,
application of mean filter does affect performance slightly due to
the blurring introduced. In Fig. 10, it can be seen that the noise has
caused imperfect segmentation. However, these imperfections
don’t cause much trouble in the features extraction process due to
the very nature of the feature being used. The presence of noise
will affect the amount of edges produced by the edge detection
filters, but most of the trivial edges caused by low intensity noise
will be removed during the thresholding process. Furthermore,
during the SMH feature extraction, the tiny dots in the
background and the small holes in the foregrouond caused by
noisy segmentations will not affect the feature dramatically. The
classifier will still be able to classify them correctly, as is evident
from the results in Table 2.
ion. (a) Six images with varying illumination. (b) Corresponding segmented images

(a) Segmentation of grass weed blur image. (b) Segmentation of broadleaf weed blur
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3.3. Performance of extracted features

Optimal parameter selection is the key to optimal performance.
Several experiments were carried out for determining the optimal
set of parameter values for the proposed features extraction
scheme. The shape features largely depend upon the grid cell size
for local leaf structure estimation and the typical leaf sizes. Since,
the leaf size depends upon the height of camera, it is important to
derive a relation between camera heights and cell sizes. In order to
allow sufficient discrimination between the two weed species,
several grid sizes were investigated with images captured at
varying heights. A performance drop was observed when cell size
was set too small or too large, mainly because it failed to represent
the two leaf structures discriminatively. For an image captured at a
height of 1, 2, and 3 m above ground, accuracies with varying cell
sizes are given in Fig. 11. Cell sizes are shown in percentage of
image sizes and can be computed using (10 and 11). For the current
dataset containing image resolution of 320 � 240, setting the cell
size to 2% of the image for images captured from a height of 2 m
Table 1
Effect of image blur on performance using the proposed framework.

Motion Blur Strength Classification Performance (%)

Low 97.42
Medium 96.50
High 91.16

Table 2
Effect of noise on performance using the proposed framework.

Noise Levels Sigma (variance) 

No noise – 

1 0.01 

2 0.02 

3 0.03 

4 0.04 

5 0.05 

Fig. 10. Effect of noise on image
yields the best results. However, images captured at other heights
have different optimal cell sizes.

patch width ¼ patch size
100

� image width
� �

ð10Þ

patch height ¼ patch size
100

� image height
� �

ð11Þ

3.4. Classification performance

Supervised learning has shown promising results in so many
computer vision applications. Highly focused work is in progress
for building new ways of building powerful models that achieve
higher accuracies in solving complex problems. In addition to
individual classifiers, ensembles of classifiers are also build to cope
with highly complicated classification tasks. One such algorithm
for generating ensemble of classifiers is AdaBoost [37]. It builds a
combination of so-called weak classifiers through a strong learning
algorithm i.e. AdaBoost. It has exhibited considerable improve-
ments in comparison to individual classifiers.

The AdaBoost algorithm inputs labeled dataset (X, Y) = {(x1,
y1), . . . (xn, yn)} where xn 2RN is the N-dimensional feature vector
used to classify the particular weed image, and yn 2 {�1, +1}
represents the classification labels for both weeds. It then calls the
weak classifier or base learner iteratively. At every iteration, a
Performance

Without mean filtering (%) With mean filtering (%)

98.40 98.29
91.32 96.23
90.95 95.1
89.42 94.56
88.00 93.42
87.61 92.85

 segmentation (no filtering).



Fig. 11. Classification accuracies for varying cell sizes.

Fig. 12. Classification accuracies of the proposed framework with different classifiers.

Table 3
Execution time of various phases in the proposed method.

Processing Module Execution Time (per image)

Segmentation 1.7 ms
EOH Feature Extraction 19 ms
SMH Feature Extraction 10 ms
Classification 4.5 ms
Overall 35.2 ms (28.4 fps)
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weight is assigned and modified for each training sample xi such
that the weights of incorrectly classified samples gets enlarged
forcing the weak learner to focus on the difficult patterns in the
training dataset. The base learner is only required to find a
hypothesis ht: X ! Y for distribution Dt. The goodness of a
hypothesis h is measured by its error e at each iteration t as follows.

et ¼ P½htðxiÞ 6¼ yi� ¼
X

i:htðxiÞ6¼yi

DtðiÞ ð12Þ

Upon calculation of ht, AdaBoost selects a parameter at = (1/2)ln
(1-et)/et that is the weight of ht signifying its importance. It is
important to note that at gets large when et gets smaller. The final
hypothesis consists of a weighted majority vote of T weak
hypotheses where at specifies the weights given to ht. Thus, for
each instance xi, ht outputs a prediction ht(xi) 2 R whose sign is the
output label.

ŷ ¼ f ðxÞ ¼ sgn
XT
t¼1

athtðxÞ
  !

ð13Þ

In our case, several weak learners were tested with AdaBoost
including Naïve Bayes [38], BayesNet [39], simple logistic
regression [40], decision tree [41], and random tree [42]. Among
these base classifiers, AdaBoost performed best with Naïve Bayes,
reporting an overall accuracy of 98.16% for both weed types.
Classification accuracies of 97.17%, 94.65%, and 98.16% were
reported by AdaBoost + Naïve Bayes for EOH, SMH and EOH + SMH,
respectively. The performance with the other configurations is
provided in Fig. 12.

3.5. Computation time analysis

In real-time computer vision systems, it is necessary to consider
the execution time of data processing algorithms as it is the key to
their applicability in real-time scenarios. In this section, we
present the time taken by the various processing components of
the proposed scheme. It can be seen from Table 3, that the most



Table 4
Classification accuracies with different classifiers.

Method Classification
Accuracy
(original
dataset)

Classification
Accuracy
(expanded
dataset)

Computation
Time

Combined Strategy [9] 92.63 71.45 135.0 ms
Shape + Fuzzy [6] 92.94 74.22 430.0 ms
Wavelet + KNN [8] 94.35 81.17 40.0 ms
MWD [21] 95.00 84.28 47.5 ms
Mixture Features [24] 97.66 91.66 350 ms
LBP + SVM [16] 98.00 85.14 45.4 ms
SWLDA + SVM [23] 98.10 92.87 40.5 ms
EOH + SMH + AdaBoost 98.40 94.72 35.2 ms
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computational expensive module is the EOH feature extraction
because of the slightly heavy computations involved in computing
local edge orientation histograms. SMH feature extraction module
runs slightly faster than the EOH algorithm and requires on average
10 ms for each image. The prediction process requires about 4.5 ms
and the segmentation process takes just under 2 ms. Overall, the
whole scheme require 35.2 ms which make it suitable for real-time
systems, since, it is capable of processing 28.4 frames per second.

3.6. Comparison with other methods

The proposed method was compared with seven other state-of-
the-art methods, developed in the last 5 years. These methods use
wavelet features, spatial analysis, local binary patterns, principal
component analysis, and fusion based methods to discriminate grass
from broad leaf weeds. The accuracies of all these methods with the
dataset used, and their computation times are depicted inTable 4. All
these methods performed exceptionally well with their datasets
achieving above 90% classification accuracies. However, when we
evaluated these methods on our expanded dataset which included
images with varying illumination, motion blur, and slight noise, their
performance dropped significantly. For instance, 22%, and 24% drops
were noticed in the performance of combined strategy [9] and
shape + fuzzy method [6] with our expanded dataset, because they
evaluated their algorithms on very low weed infested areas. This is
the highest performance drop among all the methods being
compared. Similarly, significant drops in classification performance
were noticed in the methods [8,16,21], when these methods were
evaluated using our dataset. The methods Refs. [23,24] used a
combination of features to perform classification and hence were
found to be relatively robust than the other methods. However, the
method Ref. [24] carry a heavy computational cost due to the
ensemble of two neural networks and combination of several
computationally expensive features, which makes it unsuitable for
real-time weed classification. In summary, it can be seen that the
proposed method compares favorably, achieving 98.4% accuracy on
the original dataset and 94.72% on the expanded datasets. Our
method shows improved performance over the rest of the methods
due to its robustness to illumination variation, motion blur, and
noise. Table 4 lists comparison in terms of classification performance
and computation time for the proposed method and other
approaches. The computation times have been derived by running
the algorithm on the same hardware platform.

4. Conclusion and future research directions

In this paper, the problem of weedclassificationwas addressed by
employing EOH and SMH features along with AdaBoost classifier for
real-time herbicide sprayer systems. An adaptive and light-weight
image segmentation algorithmwas devised to eliminate background
from the captured image. Special care was taken to account for
changes in lighting conditions in the field, motion blur, and noise
during the segmentation and feature extraction phase. It was
observed that broad and grass weed images vary greatly in their
shapes, causing different edge patterns and local shape structure
across the entire image. In order to capture these discriminating
characteristics, both texture and local shape features are extracted
from the segmented weed images. A feature vector consisting of 74
values was constructed for each training image. AdaBoost algorithm
was used to build an ensemble of Naïve Bayes classifier for weed
classification. Experimental results reveal that the proposed scheme
was able to classify weeds with high accuracies even in the presence
of illumination variation, motion blur, and noise. An improvement of
4.7% was observed when compared with other state-of-the-art
methods.

In our approach, the proposed shape features depend on the
plant height as well as overlapping of leaves. Hence, it is necessary
to optimally select the grid size corresponding to the height of the
plants in the field. In future, we plan to use more powerful and
robust hand-crafted features as well as feature engineering
schemes to perform a fine-grained classification of many weed
types and crops.
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