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• An optimized deep autoencoder is presented for learning sequences and squeezing high. dimensional features.
• Investigated a non-linear learning approach for action recognition.
• Iterative fine-tuning of the trained recognition model for newly accumulated data.

a r t i c l e i n f o

Article history:
Received 1 August 2018
Received in revised form 14 December 2018
Accepted 13 January 2019
Available online 28 January 2019

Keywords:
Big data processing
Action recognition
Online data stream analysis
Optimized deep autoencoder
Convolutional neural network
Machine learning
Non-stationary environment

a b s t r a c t

Action recognition is a challenging research area in which several convolutional neural networks (CNN)
based action recognitionmethods are recently presented. However, suchmethods are inefficient for real-
timeonline data streamprocessingwith satisfied accuracy. Therefore, in this paperwepropose an efficient
and optimized CNN based system to process data streams in real-time, acquired from visual sensor of
non-stationary surveillance environment. Firstly, frame level deep features are extracted using a pre-
trained CNNmodel. Next, an optimized deep autoencoder (DAE) is introduced to learn temporal changes
of the actions in the surveillance stream. Furthermore, a non-linear learning approach, quadratic SVM is
trained for the classification of human actions. Finally, an iterative fine-tuning process is added in the
testing phase that can update the parameters of trained model using the newly accumulated data of non-
stationary environment. Experiments are conducted on benchmark datasets and results reveal the better
performance of our system in terms of accuracy and running time compared to state-of-the-art methods.
We believe that our proposed system is a suitable candidate for action recognition in surveillance data
stream of non-stationary environments.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Human action recognition encompasses many important do-
mains of real-life such as intelligent videos surveillance, detection
of abnormal and suspicious actions, video retrieval based on differ-
ent actions, video semantic recognition, and patients monitoring
in healthcare centers [1–3]. There are numerous applications of
action recognition using online data stream such as monitoring
through visual sensors in surveillance, videos from websites, and
social media feeds, that can lead to detect initiated anomaly, fraud
or any abnormal situations [4]. In the context of videos, human
actions can be recognized by themovement of different body parts
such as hands and legs. A single still image cannot convey the
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whole idea of an action [5]. For example, jumping for a head-shot
in football and skipping rope have the same action pose in the
initial frame. The discrimination of both actions can be captured
in a sequence of frames. Analyzing the movements of a human
body in frame sequence and interaction with surrounding leads to
recognizing the perfect actions in the video data stream [6,7].

In non-stationary data streams whenever variation in new data
is encountered, the trained model over the previous data cannot
be considered effective enough. The reason is its adaptability issue
over the new distribution of data which needs diversity for non-
stationary environment [8]. To overcome this issue, Lobo et al. [9]
considered it as an optimization problem, which is solved by a
bio-inspired algorithm to validate the heterogeneity of drifts and
achieved high diversity through self-learning optimization tech-
nique. Another novel approach is proposed by Krawczyk et al. [10]
modified weighted one-class SVM and improved it for the non-
stationary streaming data analysis. They claimed that one-class
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classifier can adapt its decision boundary according to new data
streams along with forgetting mechanism which helps the model
to re-learn the parameters. Similarly, Bartosz et al. [11] presented
an efficient ensemble learning technique for recognizing activities
in real-time. The system iteratively modifies the weights of Naïve
Bayes classifier and make it smoothly adaptable to current situ-
ation of stream even without an external drift detector. Abdallah
et al. [12] presented a detailed survey about activity recognition in
online data stream mining. Moreover, recognizing human actions
accurately in real-time from online surveillance data stream is a
highly challenging task due to computation of high-dimensional
features, variation in viewpoint, motion, cluttered backgrounds,
occlusion, and different illumination conditions [13–15].

To address these problems, numerous handcrafted local fea-
ture descriptors were used in the domain of recognizing human
actions since the last decade [16–18] in which the number of
spatial–temporal based approaches were significant [18–20]. Such
schemes are based on the analysis of motion information and
can be improved in performance by Bag-of-Words (BoW) [21–23]
but developing BoW is computationally expensive and requires
hard engineering. Dalal et al. [24] presented motion boundary
histogram (MBH), where edges motion are captured in HOG de-
scriptor. Local gradients in horizontal and vertical components
of the optical flow are calculated separately. The correspond-
ing magnitude and orientation in both components are used as
weighted votes for local orientation histograms. The extended
version of HOG feature descriptor named HOG3D is presented
by Klaser et al. [17] in which 3D gradients orientation computed
from integral video representation are binned into polyhedrons to
analyze appearance and motion information. This scheme has ex-
pensive quantization cost due to high dimensionality structure. To
handle this problem, Shi et al. [25] introduced Gradient Boundary
Histograms (GBH). They used time-derivatives of image gradients
instead of simple gradients to highlight the moving edge bound-
aries. Klaser et al. [26] proposedOptical FlowCo-occurrenceMatric
(OFCM) to extract a set of statistical measures captured using the
magnitude and orientation of optical flow. The key motivation to
design OFCM was on assumption that the spatial relationship can
be found in the local neighborhoods of the flow field, which has a
major contribution in the representation of motions.

Handcrafted features extraction mechanisms involve hard en-
gineering, represents low-level semantic of visual data, and high
complexity for extraction and classification. Therefore, automatic
features learning methods are initiated by researchers. For in-
stance, neural networks-based methods can directly extract fea-
tures from raw inputs based on its trained weights and biases.
CNN learns features in a hierarchical way where initial layers
acquire local features from visual data and the final layers extract
global features representing high-level semantics [27]. Recently,
researchers have tried to develop a variety of CNN architectures
for sequence learning of action recognition. For instance, a CNN
framework based on spatio-temporal information is proposed by
Karpathy et al. [28] to learn the motion features. Several temporal
information fusion schemes are analyzed to fuse local motion di-
rectionwith global features. However, the recognition rate is 63.3%
on UCF 101 dataset [29], indicating that their CNN architecture
is unable to effectively represents human actions in the video
stream. In another work, Park et al. [30] extracted motion infor-
mation for a specific part of the image using a spatial network, that
captures highly activated features from magnitude information of
the optical flow. Features maps of the last convolutional layer of
spatial network are analyzed to compute optical flow magnitudes.
Another similar work presented by Simonyan and Zisserman [31]
is based on a two-stream network. The first stream involves spatial
network which extracts temporal information from the sequence
of frames. In the second stream, temporal network is utilized to

compute dense optical flow displacements across multiple frames.
Finally, the average scores from both streams are used for pre-
diction. Majority of the deep CNN frameworks are for 2D images
without keeping time information. Ji et al. [32] presented a 3D CNN
for end to end action recognition. Their model extracts features
from both the spatial and temporal dimensions to get motion
information from multiple adjacent frames. This method is based
on analyzing consecutive segments of human subjects in video
frames.

Deep CNN based methods can learn influential weights to dis-
criminate between different actions present in visual data [33].
However, action recognition models are not trained on a large-
scale dataset such as ImageNet. Many studies [6,27,34] have con-
cluded that the activations of pre-trained CNN models achieved
impressive success for image retrieval, fire detection, and video
summarization. Therefore, we have extensively investigated the
deep features of various pre-trained CNN models for action recog-
nition. Furthermore, existing CNN models are computationally
expensive and their recognition accuracy is not satisfied for all
environments such as online data streams of non-stationary envi-
ronment. Therefore, we conduct this study to address these issues
with the following key contributions:

1. We propose an efficient and optimized action recognition
system to process data streams acquired from visual surveil-
lance of non-stationary environment. Our system uses the
activations of fully connected layer of a pre-trained VGG-
16 CNN model for frame level representation of an action
in video streams.

2. Actions are sequence of motion patterns in consecutive
frames, and the frame level features are high-dimensional
raw data to recognize actions precisely. Therefore, we have
trained an optimized DAE to squeeze those features and
make it able to associate frame to frame hidden changes in
low-dimensional feature plane. This enables our system in
effective sequence learning for action recognition compared
to complex learning approaches such as long short-term
memory (LSTM).

3. We have investigated a non-linear learning approach and
trained an efficient quadratic SVM to recognize actions from
low-dimensional features plane.

4. The video data in non-stationary environments are very
diverse in nature due to changing overtime, where one-
time trained models are not effective enough for precise
predictions. Therefore, we introduce an iterative fine-tuning
module that collects new data of high confidence prediction
for actions and iteratively fine-tune the recognition model
with this data. This process makes our system capable of
updating itself according to the variations in the underlying
non-stationary environment.

5. Our system is tested on benchmark datasets from differ-
ent perspectives and results are encouraging compared to
state-of-the-art,making it suitable for real-time surveillance
monitoring in general and data streams of non-stationary
environment in particular.

The remaining paper is organized as follows: Section 2 high-
lights various aspects of the proposed framework. Experimental
setup and discussion on results are given in Section 3. Conclusion,
strengths, weaknesses, and future directions of this work are dis-
cussed in Section 4.

2. Proposed framework

In this section, the mechanism of the proposed system is dis-
cussed in detail. The system includes representation of actions
in online video data stream using deep CNN features, sequence
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Fig. 1. The proposed framework for human action recognition system. An online video data stream is forward propagated to a pre-trained CNN model to extract features
from a fully connected layer. This is followed by a deep autoencoder which learns the temporal changes of a human action in low dimensional features plane. Finally, a
quadratic SVM is used to classify human actions.

learning using DAE, and classification of actions with a quadratic
SVM. First, deep features are extracted from selected frames of
online data stream using a pre-trained VGG-16 CNN model. Sec-
ond, the high dimensional features are squeezed and the temporal
changes between features are learned in a low dimensional feature
plane using DAE. Finally, a quadratic SVM is trained to classify the
squeezed features of processed duration of online video stream.
Furthermore, we accumulate the data streamwith high confidence

scores of different actions and iteratively fine-tune our recogni-
tion model with new data to adopt variations of non-stationary
environment. The proposed framework is shown in Fig. 1 whereas
each phase of the system is described in a different section and the
implementation steps are given in Algorithm 1.

2.1. Deep features extraction and preparation

Video data contain a large amount of hidden visual contents
including temporal changes of texture, motion, edges, and colors.
An efficient representation and analysis of these contents allow
us to make automatic timely decisions such as human actions
recognition, fire detection, contextual information analysis, and
event detection. Deep neural networks have shown its effective-
ness in images [35], sounds, and videos analysis [36] because of
its remarkable representational abilities [37]. Training a deep CNN
model requires a huge amount of data andhigh-cost computational
resources. The solution to this problem is to use pre-trained CNN
models for different problems as their parameters are trained on
enormous datasets such as ImageNet [38]. In the proposed sys-
tem, a fully connected ‘‘FC8’’ layer of a pre-trained VGG-16 [39]
CNN model is used to extract features from video frames. The
fully connected layer extracts generic global descriptors from an
image [34]. Therefore, we argue that these features are highly
dominant and capable of representing visual contents which can
help us for learning the complex sequences in the video frames.
The pre-trained CNNmodel process one frame at a time, where the
video data contains a sequence of frames. We have fed 15 frames
to the employed CNN model taken from online video data stream
of one-second with one frame skip. It gives a high dimensional
features vector representing human action in a raw form. The
temporal sequences between these features are squeezed through
an efficient DAE and learned it using a quadratic SVM for human
action recognition.

2.2. VGG-16 CNN model

In the proposed framework a VGG-16 [39] CNN architecture is
chosen for deep features extraction from video frames. Because it
is noticed in our experiments, that it can achieve sensible stability
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Table 1
The architecture of a pre-trained VGG-16 CNN model.
Layers Conv1a

Conv1b
Conv2a
Conv2b

Conv3a
Conv3b

Conv3c Conv4a
Conv4b

Conv4c Conv5a
Conv5b

Conv5c FC FC FC8

Kernel size 3 × 3 Max
pooling

3 × 3 Max
pooling

3 × 3 3 × 3 Max
pooling

3 × 3 1 × 1 Max
pooling

3 × 3 1 × 1 Max
pooling

Inner
product

Inner
product

Inner
productStride, Pad 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

Channels 64 128 256 256 512 512 512 512 4096 4096 1000

Fig. 2. The architecture of the stacked four autoencoders squeezing high-dimensional features to low-dimensional features.

Fig. 3. Performance of the feature transformation from high-dimension to low-dimensions. (a) Mean square error graph of DAE decreasing with training epoch. (b)
Comparison between the encoded features with some part of the original features.

between the accuracy and time efficiency for action recognition
problem. The architecture of VGG-16 is given in Table 1. The archi-
tecture of VGG-16 is different from previous state-of-the-art CNN
models [40–43] where initial layers are convolved with 11 × 11 or
7 × 7 kernels with 4 to 5 strides. This type of setup increases the
number of parameters in a CNN model. Furthermore, with wide
stride, it can miss important patterns in the image. On the other
hand, VGG-16 contains 3 × 3 kernels for all convolutional layers
with 1 stride, helping to reduce the number of parameters in layers
and convolve each pixel of the image due to 1 stride. It can be seen
from Table 1 that two consecutive 3 × 3 convolution layers are
applied without a pooling layer in between. This combination of
two-layer results in effect of 7× 7 kernels. Assembling consecutive
three convolutional layers are followed by a ‘‘relu’’ activation,
where multiple non-linear functions make it more discriminative.

2.3. Deep autoencoder

Deep autoencoder is an effective unsupervised feature repre-
sentation technique with multiple hidden layers. The motivation
behind the neural concept of data learning is that the parameters
of hidden layers are not manually constructed [44,45], but they
are learned according to the given data automatically. This idea
encouraged us to learn time axis features of video sequences using
DAE. The high dimensional deep features are squeezed to low
dimensions with a negligible error during transformation. Deep
features from the sequence of frames are extracted and learned
its hidden patterns and frame to frame changes using an efficient

architecture of four layers stacked autoencoder as shown in Fig. 2.
The first layer encodes 15000-dimensional feature vector to 8000
neurons, pursued by 4000, 2000, and 1000 dimensions reduction,
respectively. The reason behind reduction of high dimensional data
with half factor is to reduce time complexity of the autoencoder.
Squeezing high dimensional data with small steps and multiple
deep layers results in high computational complexity. The DAE
learns ‘‘hierarchical grouping’’ or "part-whole decomposition" in
the input data [46]. The initial layers of the stacked autoencoder
capture the first order features and changes in the raw input data.
On the other hand, the intermediate layers learn the second-order
feature corresponding to the patterns that come in the first-order
features. Therefore, we argue that the proposed DAE learns the
changes and patterns of human action in video sequence effec-
tively.

The autoencoder is comprised of two phases: First is encoding
where data ismultiplied byweights, biases are added, and followed
by some non-linearity function such as sigmoid and relu given in
Eq. (1). Secondly, the encoded data is decoded to the same number
of inputs as shown in Eq. (2). The weights are adjusted using a
backpropagation to reduce the mean squared error near to zero.

h (x) = sigm (Wx + b) (1)

x̂ = sigm (W (h (x)) + b) . (2)

In the stacked autoencoder, the first hidden layer takes input x,
while the other gets input from the previous hidden layer in the
network as shown in Eqs. (3) and (4). Herein, ‘‘n’’ is the number of
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Fig. 4. Hyperplane separation between two class data using linear SVM and non-
linear SVM classification.

layers for encoding, xl,W l, and bl are the data, weights, and biases
of the concerned layer, respectively.

h (x)(l+1)
= sigm

(
W lxl + bl

)
(3)

x̂(n+l+1)
= sigm

(
W (n−l)h (x)(n+l)

+ b(n−l)) (4)

The proposed DAE is trained up to 400 epochs. The L2 weights
regularization is applied to diminish the over-fitting problem and
‘‘falling into local minima’’ problem. The sparsity regularization is
also applied with sigma α of value 0.05 which means that each
neuron in the hidden layer takes an average output of 0.5 over
the training samples. Finally, mean squared error (MSE) with L2
regularization and sparsity regularization is used as a cost function
for fine-tuning the weights of the DAE. The error is reduced up to
10−2 in 300 epochs, which was 0.0077 for the last epoch of the

training phase. Fig. 3(a) shows performance graph of the train-
ing phase, where we can see that the error is reduced smoothly
without going into overfitting problem. Fig. 3(b) represents the
comparison between the encoded data with some portion of the
original data. It can be noted that data having low activation, are
caught by the sparsity regularization and high values have got the
same graph pattern as the original data.

2.4. Learning actions using quadratic SVM

Learning with linear SVM is not effective in a high dimensional
features plane when substantial class overlapping comes in the
training data as the hyperplane separating two different classes,
is always a straight line [47] as shown in Fig. 4. In such case, a
non-linear SVM is effective which can separate the data with wide
hyperplane between two class data. In training SVM for multiple
classes, we get the imbalance data problem and we need to train
one category data against all categories, because SVM is originally
for binary class classification. In the non-linear SVM, increasing the
polynomial function may give an optimum hyperplane between
the two classes, but it increases the computation time of the
system [48]. In our system, we have used a non-linear quadratic
SVM through which we have achieved stability between accuracy
and time efficiency.

M =
N (N − 1)

2
(5)

Two strategies have been used for multi-class SVM: one-vs-
one (OvO) and one-vs-all (OvA). In ‘‘OvO’’, we need to train ‘‘M ’’
classifiers for ‘‘N ’’ classes as given in Eq. (5) where the nth class is
trained against allN − 1 classes. This is computationally expensive
when the number of classes increases. In case of the proposed
system, it is trained on UCF101 [29], HMDB51, and UCF50 datasets,
which has 101, 51, and 50 categories, respectively. This lead to
5050 classifiers for 101 categories of data, 1275 and1225 classifiers
for 51 and 50 classes, respectively. This type of setup is not efficient
in real-time applications such as surveillance stream. On the other
hand, in ‘‘OvA’’weneed only ‘‘N − 1’’ classifiers. It requires training

Fig. 5. Iterative fine-tuning process of the proposed system.
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Fig. 6. Sample action classes form UCF101, UCF50, HMDB51, and YouTube actions datasets.

Fig. 7. Confusion matrixes of UCF50 and UCF101 action recognition datasets.

of single classifier per-class, with the training data of one class as
positive samples and all other classes data as negatives samples. In
such case, the classification gets into imbalance data problem due
to samples of one class data against samples of all classes. In the
proposed system, we have used a highly powerful feature which
is discriminative for each class, therefore, we get high accuracy on
‘‘OvA’’ non-linear classifier.

2.5. Incremental model training for data stream

Another encouraging feature of our system is its capability
to update itself iteratively, grasping the changes in surrounding
environment. The iterative training process is shown in Fig. 5. The
data stream predicted with confidence score greater than a certain
threshold can be used to re-train the model iteratively, enabling
it adaptive to different varying conditions. The threshold can be
selected considering the requirements of users, environmental
effects, and deployment settings. The data with high confidence
scores is accumulated along with the predicted labels. When a
certain amount of data is assembled, the same trained model is

fine-tuned with new data which adapts itself with the variations
in the environment. Considering these characteristics, our system
can be implemented in health care centers for patient activity
monitoring and for anomaly, fraud and intruder detection in real-
time video streams of surveillance.

3. Experimental evaluation

In this section, we evaluated the proposed system on several
benchmark datasets used for action recognition assessment. The
datasets include UCF101 [29], UCF50 [58], YouTube Actions [59],
and HMDB51 [60]. Sample categories from five different datasets
are shown in Fig. 6. The proposed systemwas implemented and as-
sessed using MATLAB2017b on Ubuntu16.04 environment,
CoreTMi5-6600 set up with 16 GB RAM and 12 GB GeForce-Titan-
X GPU. A deep learning toolbox ‘‘MathConvNet’’ is used for CNN
features extraction, neural network toolbox is used for DAE, and
‘‘classification Learner’’ toolbox is used for learning quadratic SVM
classifier for action recognition. The proposed method is assessed
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Fig. 8. Confusion matrixes of HMDB51 and YouTube action recognition datasets.

Table 2
Comparison of the proposed system with state-of-the-art hand-crafted and CNN based action recognition methods.

Methods (Accuracy %)

UCF50 UCF101 HMDB51 YouTube action

Hand crafted
features-based
methods

HOG–HOF + FV [49,50] – 75.4 45.6 –
OHF + BoW [24,50] – 77.1 51.5 –
GBH + MBH [25] – 86.6 62.2 –
Improved dense trajectories
hybrid approach [21]

92.3 87.9 61.1 –

Multi-view super vector [51] – 83.5 55.9 –

Neural
network-based
methods

LSVC with CNN [28] – 65.4 –
Composite LSTM [52] – 75.8 44.1 –
Hierarchical clustering [53] 93.2 76.3 51.4 89.7
key-volume mining deep
CNN [54]

– 93.1 63.3 –

FSTCN (SCI fusion) [55] – 88.1 59.1 –
Fusion (S: VGG-16,
T:VGG-16) [56]

– 92.5 65.4 –

Single stream CNN [57] – - – 93.1
Two-stream model (fusion by
SVM) [31]

– 88.0 59.4 –

Proposed system 96.4 94.33 70.3 96.21

using four different accuracy calculation metrics including confu-
sion matrix (Fig. 7 and Fig. 8), precision, recall, and the F-measure
score given in Table 3. Results of each dataset and comparisons
with state-of-the-art are given in Table 2 and discussed in separate
sections.

3.1. UCF101 dataset

UCF101 [29] is a popular real-life action videos dataset which
contains 13320videos of 101 action classes collected fromYouTube
in ‘‘.avi’’ format. The number of samples for all categories are
balanced, ranging from100∼130 samples andduration of an action
in each sample is 2∼7 s. UCF101 is relatively a challenging dataset
because of many action classes where humans are performing
actions on different objects, musical instruments, sporting goods,
and interaction with parts of human body. Results are collected
using this dataset and comparison with state-of-the methods is
given in Table 2, where column 4 presents the percentage accuracy
of the proposed system. Confusion matrix for the test set on this
dataset is shown in Fig. 7 where we have achieved an overall
accuracy of 94.33%. We compared the proposed system with the

histograms of oriented gradient and optical flow (HOG–HOF) +
fisher vector (FV) [13], oriented histogram flow (OHF) + bag of
words (BoW [15], gradient boundary histograms (GBH) + motion
boundary histogram (MBH) [25], improved dense trajectories (IDT)
hybrid approach [21], and multi-view super vector [51] hand-
crafted features. The IDT [51] shows the best accuracy of 87.9% on
UCF101 dataset among all hand-crafted features based methods.
We have outperformed these methods by 6.43% increase in accu-
racy, which is evident from column 4 of Table 2. The performance
of the proposed system beat neural network-based methods [28,
31,52–56] with 1.23% improvement in the accuracy. The precision,
recall, and F1-measure score for the UCF101 dataset is given in
Table 3, where we have achieved positive prediction score 0. 8932,
0. 9035 sensitivity score, and 0. 8983 F1-measure scores. These
statistics show the effectiveness of the proposed system for human
action recognition on the UCF101 dataset.

3.2. UCF50 dataset

UCF50 is a diverse collection of human actions due to high
diversity in camera motion, object appearance and pose, object
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scale, viewpoint, cluttered background, and different illumination
in surroundings [58]. It has fifty action classes, wherein videos of
each category are divided into different groups that share some
common features variations such as in one group a piano is played
by a person four times but with a different viewpoint. The com-
parison with state-of-the-art methods on this dataset is given in
Table 2. It is evident from column 3 of Table 2 that the proposed
system has achieved higher accuracy compared to both hand-
crafted features and deep features-based methods. Confusion ma-
trix of the test set for UCF50 dataset is shown in Fig. 7 where we
have achieved percentage accuracy of 96.4%. The proposed system
has reported an improvement of 4% in results to hand-crafted
features-based method (IDT) [21] and 3% to CNN features based
hierarchical clustering [53] method. The precision, recall, and F1-
measure scores for the UCF50 dataset are given in Table 3. The
proposedmethod has achieved higher true positive, sensitivity and
effectiveness scores 0.9321, 0.9124, and 0.9221, respectively.

3.3. HMDB51 dataset

The HMDB51 [60] is considered as a challenging dataset in
action recognition society. It contains actions related to human
facial interaction, motion of the body parts, body dealing with
objects, sports, and human exercises. The dataset comprises of
6849 action samples taken from YouTube with a variety of dif-
ferent subjects and is divided into 51 categories. In each category
there are more than one hundred video samples. The dataset is
made more challenging because of taking samples from a variety
of subjects in different illumination and viewpoint changes for
performing the same actions. On this dataset, the accuracy of state-
of-the-art methods lies under 60%. In the proposed system, we
represented human action with high-level features using CNN and

Table 3
The effectiveness of the proposed system using precision, recall, and F1-measure
scores.
Dataset Precision Recall F1-measure

UCF50 [58] 0.9321 0.9124 0.9221
UCF101 [29] 0.8932 0.9035 0.8983
HMDB51 [60] 0.6906 0.6234 0.6553
YouTube actions [59] 0.9541 0.9387 0.9463

DAE, which helps to recognize the complex action in an efficient
way with improved accuracy. The comparison with previous tech-
niques reported for HMDB51 is given in Table 2, where the pro-
posed system has dominated [21,25,51]. The method [25] shows
best performance of 62.2% accuracy on HMDB51 among all hand-
crafted features based methods. The proposed system is also com-
pared with CNN based methods including composite LSTM [52],
hierarchical clustering [53], key-volume mining deep CNN [54],
FSTCN (SCI fusion) [55], fusion (S: VGG-16, T:VGG-16) [56], and
two-stream model (fusion by SVM) [31]. The proposed system
has improved performance of these methods by 8.2% in accuracy
of hand-crafted features and 5% for the CNN based approaches.
Confusion matrix for HMDB51 dataset is shown in Fig. 8 where we
have achieved percentage accuracy of 70.4%. The precision, recall,
and F1-measure score for HMDB51 dataset is given in Table 3. On
this dataset,wehave achieved0.6906precision, 0.6234, and0.6553
for recall and F1-measure score, respectively. The low recall score
is due to high false positives received for some actions such as Fig. 8
(class 50), which has comparatively many false positives. Despite
these factors, our system achieved a higher accuracy of 70.4% on
this challenging dataset.

Fig. 9. Predicted results alongwithmaximum confidence scores for the overall test video by the proposed action recognition system. The underline red text shows in-correct
prediction of our system.
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Fig. 10. Sample variations in predictions and confidence scores for an action with respect to time. The overall accuracy is considered from the predictions of the particular
action for all five intervals.

3.4. YouTube actions dataset

YouTube action is one of the complex and challenging datasets
because the actions samples are collected in low resolution with
moving and still camera in different scales, clustered background,
illumination and viewpoint changes. It contains 11 action classes
collected from sports in which some videos are taken from 25
subjects with 4 samples for each action and other videos are
collected fromYouTube. The comparative results using this dataset
with other methods is given in Table 2. Two CNN based methods
including hierarchical clustering [53] and single stream CNN [57]
achieved 94.3% and 93.1% accuracy, respectively, which is im-
proved by our proposedmethod by almost 2%. Confusionmatrix of
the test set for YouTube actions dataset is presented in Fig. 8where
we have achieved percentage accuracy of 96.21%. The proposed
system exhibits better precision, recall, and F1-measure score of
0.9541, 0.9387, and 0.9463, respectively for this dataset as given in
Table 3.

3.5. Discussion on visual results

The proposed system is evaluated on 20% samples from each
dataset to obtain the quantitative results. Fig. 9 shows correct and
incorrect predictions with their maximum confidence scores of
our proposed system for a single action video. A set of frames of
each action are also given for better understanding of readers. It
is noted from the experiments that the complex actions such as

‘‘Horse racing’’ and ‘‘Horse riding’’ which has minor difference of
‘‘many horses’’ and ‘‘one horse’’, respectively, has more than 95%
accuracy. Row 2 and Row 5 of Fig. 9 show incorrect predictions.
This is due to the common visual contents in the ground truth
and predicted classes of the dataset. For example, ‘‘skateboarding’’
is predicted as ‘‘skiing’’ and ‘‘diving’’ is miss-classified as ‘‘high
jump’’. However, the confidence scores of incorrect predictions of
these challenging classes are very low. Thepredication ‘‘high jump’’
is incorrect because when the diver jumps for the dive, changes
between the frames, represent high jump class for that particular
interval of time.

3.6. Model behavior vs. label transitions over time

The proposed trained model predicts action in the data stream
over intervals, and for each interval of time, the confidence score
changes due to motion of the camera, variation in the viewpoint,
and scale of an actor. It is very challenging to have adjacent predic-
tion scores for the same action or abrupt change during transition
to another action. A series of confidence scores and predicted
actions over time are visualized in Fig. 10, where scores for the
same class are approximately similar to each other. However,
when there are some overlapping frames of two actions in the
interval under process, it affects the accuracy of prediction in a
negativemannerwith a low confidence score. This situation can be
observed from Fig. 10 (Row3 and Row4). For instance, in Row4 the
frames of ‘‘jumping’’ action are overlapped with frames of ‘‘dive’’
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Fig. 11. Processing time of the proposed system on CPU and GPU taken for one second video data stream for action recognition.

action. Therefore, in the first interval of the concerned sequence,
high jump is predicted with low confidence score and for rest
of the intervals, scores are adjacent and predictions are accurate.
This problem is tackled by iteratively fine-tuning the recognition
model, which makes it adoptable to variations between different
actions performed in non-stationary environment.

3.7. Computational complexity and feasibility analysis

This section investigates the running time of our system and
its feasibility to online data stream understanding and mining.
The experiments of the proposed system for feature extraction,
training, and testing of DAE and quadratic SVM for action recog-
nition are performed using GeForce-Titan-X GPU. On this setup,
the VGG-16 model takes 0.12 s to extract features from one frame.
In the proposed system, we have fed 15 frames at a time from
video data stream to take advantage of the parallelism in GPU
which takes approximately 0.61 s for extracting features from
them. Secondly, the DAE takes 0.52 s for squeezing action patterns
to lowdimensional features plane. Finally, the quadratic SVM takes
only 0.18 s to classify the given set of frames into action categories.
As a whole, the system takes 1.31 s for processing 30 frames from
the video stream, showing nearly real-time processing. Based on
the statistics shown in Fig. 11, the proposed system can process
25 frames per second in real-time surveillance for human action
recognition in non-stationary environments.

4. Conclusion and future work

In this paper, we presented an optimized DAE based human
actions representation framework that can be implemented in
real-world dynamic scenarios. The input of our system can be
acquired from online surveillance video data stream, websites,
social media feeds or any other visual content resources. Semantic
features of a pre-trained VGG-16 CNN model are used for frame
level representation. An optimized DAE is trained to effectively
represent actions from raw information of video frames. The DAE
converts high-dimensional data to low-dimensional feature plane
and learns information variations amongst adjacent frames. Fi-
nally, quadratic SVMprocesses the output of DAE to classify the hu-
man action performedwithin the input video data stream at a par-
ticular time. Our experiments verify that the proposed system can
process 25 frames per-second regardless of the noisy effects and
heterogeneous nature of data streams. The experiments conducted
with benchmark datasets including UCF50, UCF101, HMDB51, and

YouTube Action dataset revealed that it is an efficient and effective
system for action recognition in surveillance from non-stationary
environment. Lastly, data stream with high confidence scores are
accumulated for iterative fine-tuning of the proposed action recog-
nitionmodel with new data, enabling it to adopt variations in non-
stationary environment.

In future, we plan to analyze multiple actions by detecting and
tracking multiple targets in a sequence of online video stream. The
current available realistic videodatasets contain actions performed
by a single person, where multiple actions need to be recognized
in dense situations. Secondly, when there is a situation of overlap-
ping actions in a single sequence such as jump and dive in same
sequence reduces the accuracy. This limitation will be considered
in our future work. Furthermore, we have motivation to develop
action recognition mechanism based on multi view surveillance
videos connected in a visual sensor network in different dynamic
environments. Finally, the proposed system is feasible to be ex-
tended for video classification, human activity recognition, violent
event recognition, and can be implemented for crowed analysis in
dense environment.
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